, Volume 100, Issue 2, pp 299-307

Application of AFLP, RAPD and ISSR markers to genetic mapping of European and Japanese larch

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract 

Genetic linkage maps have been increasingly developed for a wide variety of plants, using segregating populations such as F2s or backcrosses between inbred lines. These pedigrees are rarely available in outbred species like forest trees which have long generation times. Thus genetic mapping studies have to use peculiar pedigrees and markers in appropriate configurations. We constructed single-tree genetic linkage maps of European larch (Larix decidua Mill.) and Japanese larch [Larix kaempferi (Lamb.) Carr.] using segregation data from 112 progeny individuals of an hybrid family. A total of 266 markers (114 AFLP, 149 RAPD and 3 ISSR loci) showing a testcross configuration, i.e.heterozygous in one parent and null in the other parent, were grouped at LOD 4.0, θ=0.3. The maternal parent map (L. decidua)consisted of 117 markers partitioned within 17 linkage groups (1152 cM) and the paternal parent map (L. kaempferi) had 125 markers assembled into 21 linkage groups (1206 cM). The map distance covered by markers was determined by adding a 34.7-cM independence distance at the end of each group and unlinked marker. It reached 2537 cM and 2997 cM respectively for European larch and Japanese larch, and represented respectively a 79.6% and 80.8% coverage of the overall genome. A few 3:1 segregating markers were used to identify homologous linkage groups between the European larch and the Japanese larch genetic maps. The PCR-based molecular markers allowed the construction of genetic maps, thus ensuring a good coverage of the larch genome for further QTL detection and mapping studies.

Received: 15 March 1999 / Accepted: 29 March 1999