Skip to main content

Advertisement

Log in

Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L.

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

QTL and candidate genes associated to fruit quality traits have been identified in a tomato genetic map derived from Solanum pimpinellifolium L., providing molecular tools for marker-assisted breeding.

Abstract

The study of genetic, physiological, and molecular pathways involved in fruit development and ripening has considered tomato as the model fleshy-fruited species par excellence. Fruit quality traits regarding organoleptic and nutritional properties are major goals for tomato breeding programs since they largely decide the acceptance of tomato in both fresh and processing markets. Here we report the genetic mapping of single-locus and epistatic quantitative trait loci (QTL) associated to the fruit size and content of sugars, acids, vitamins, and carotenoids from the characterization of a RIL population derived from the wild-relative Solanum pimpinellifolium TO-937. A genetic map composed of 353 molecular markers including 13 genes regulating fruit and developmental traits was generated, which spanned 1007 cM with an average distance between markers of 2.8 cM. Genetic analyses indicated that fruit quality traits analyzed in this work exhibited transgressive segregation and that additive and epistatic effects are the major genetic basis of fruit quality traits. Moreover, most mapped QTL showed environment interaction effects. FrW7.1 fruit size QTL co-localized with QTL involved in soluble solid, vitamin C, and glucose contents, dry weight/fresh weight, and most importantly with the Sucrose Phosphate Synthase gene, suggesting that polymorphisms in this gene could influence genetic variation in several fruit quality traits. In addition, 1-deoxy-D-xylulose 5-phosphate synthase and Tocopherol cyclase genes were identified as candidate genes underlying QTL variation in beta-carotene and vitamin C. Together, our results provide useful genetic and molecular information regarding fruit quality and new chances for tomato breeding by implementing marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, Wang J, Zhang G, Li N, Mao L, Bakker F, Dirks R, Breit T, Gravendeel B, Huits H, Struss D, Swanson-Wagner R, van Leeuwen H, van Ham RC, Fito L, Guignier L, Sevilla M, Ellul P, Ganko E, Kapur A, Reclus E, de Geus B, van de Geest H, Te Lintel Hekkert B, van Haarst J, Smits L, Koops A, Sanchez-Perez G, van Heusden AW, Visser R, Quan Z, Min J, Liao L, Wang X, Wang G, Yue Z, Yang X, Xu N, Schranz E, Smets E, Vos R, Rauwerda J, Ursem R, Schuit C, Kerns M, van den Berg J, Vriezen W, Janssen A, Datema E, Jahrman T, Moquet F, Bonnet J, Peters S (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148

    Article  PubMed  Google Scholar 

  • Agarwal A, Rao AV (2000) Tomato lycopene and its role in human health and chronic diseases. Can Med Assoc J 163:739–744

    CAS  Google Scholar 

  • Alba JM, Montserrat M, Fernández-Muñoz R (2009) Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Exp Appl Acarol 47:35–47

    Article  PubMed  Google Scholar 

  • Ament K, Van Schie CC, Bouwmeester HJ, Haring MA, Schuurink RC (2006) Induction of a least specific genranygeranyl pyrophosphate synthase and emission of (E, E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta 224:1197–1208

    Article  CAS  PubMed  Google Scholar 

  • Areshchenkova T, Ganal MW (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42:536–544

    Article  CAS  PubMed  Google Scholar 

  • Ashrafi H, Kinkade M, Foolad MR (2009) A new genetic linkage map of tomato based on a Solanum lycopersicum × S. pimpinellifolium RIL population displaying locations of candidate pathogen response genes. Genome 52:935–956

    Article  CAS  PubMed  Google Scholar 

  • Baldwin EA, Nisperos-Carriedo MO, Moshonas MG (1991) Quantitative analysis of flavor and other volatiles and for certain constituents of two tomato cultivars during ripening. J Am Soc Hort Sci 116:265–269

    CAS  Google Scholar 

  • Borguini R, Torres E (2009) Tomatoes and tomato products as dietary sources of antioxidant. Food Rev Int 25:313–325

    Article  CAS  Google Scholar 

  • Burr B, Burr FA (1991) Recombinant inbreeds for molecular mapping in maize: theoretical and practical considerations. Trends Genet 7:55–60

    CAS  PubMed  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemarie-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTL involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  CAS  PubMed  Google Scholar 

  • Chen FQ, Foolad MR (1999) A molecular linkage map of tomato based on a cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94–103

    Article  CAS  Google Scholar 

  • Chen FQ, Foolad MR, Hyman J, St Clair DA, Beelaman RB (1999) Mapping of QTL for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTL across tomato species. Mol Breed 5:283–299

    Article  CAS  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX Jr, Pogson B, McDonald KA, DellaPenna D, Gantt E (1996) Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613–1626

    PubMed Central  CAS  PubMed  Google Scholar 

  • Di Matteo A, Sacco A, Anacleria M, Pezzotti M, Delledonne M, Ferrarini A, Frusciante L, Barone A (2010) The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biol 10:163

    Article  PubMed Central  PubMed  Google Scholar 

  • Doganlar S, Frary A, Ku HM, Tanksley SD (2002) Mapping quantitative traits loci in inbred backcross lines of Lycopersicon pimpinellifolium LA1589. Genome 456:1189–1202

    Article  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandez-Muñoz R, Dominguez E, Cuartero J (2000) A novel source of resistance to the two-spotted spider mite in Lycopersicon pimpinellifolium Jusl. Mill.: its genetics as affected by interplot interference. Euphytica 111:169–173

    Article  Google Scholar 

  • Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 2007:64358

    PubMed Central  PubMed  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Doganlar S, Frampton A, Fulton T, Uhlig J, Yates H, Tanksley S (2003) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Pinto ME, Holloway DE, Bramley PM (2000) Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24:551–558

    Article  CAS  PubMed  Google Scholar 

  • Fulton TM, Bucheli P, Voirol E, López J, Pétiard V, Tanksley SD (2002) Quantitative trait loci QTL affecting sugars, organic acids and other biochemical properties possibly contributing to flavour, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

    Article  CAS  Google Scholar 

  • Grandillo S, Tanksley SD (1996) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a croos between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965

    Article  CAS  PubMed  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Heber D, Lu QY (2002) Overview of mechanisms of action of lycopene. Exp Biol Med 227:920–923

    CAS  Google Scholar 

  • Holland JB (2001) Epistasis and plant breeding. Plant Breed Rev 21:27–82

    CAS  Google Scholar 

  • Kader AA, Stevens MA, Albright-Holton M, Morris LL, Algazi M (1977) Effect of fruit ripeness when picked on flavor and composition in fresh market tomatoes. J Am Soc Hort Sci 102:724–731

    CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmuller E, Dormann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khialparast F, Abdemishani S, Yazdisamadi B, Naghavi MR, Foolad MR (2013) Identification and characterization of quantitative trait loci related to chemical traits in tomato (Lycopersicon esculentum Mill.). Crop Breed J 3:13–18

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kotkov Z, Hejtmnkov A, Lachman A (2009) Determination of the influence of variety and level of maturity of the content and development of carotenoids in tomatoes. Czech J Food Sci 27:S200–S203

    Google Scholar 

  • Lin T, Zhu G, ZhangJ XuX, YuQ Zheng Z, Zhang Z, LunY Li S, Wang X, Huang H, Li J, Chunzhi Z, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li J, Ye Z, Du Y, Huang S (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 1581:413–422

    Google Scholar 

  • Lois LM, Rodriguez-Concepción M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. Plant J 22:503–513

    Article  CAS  PubMed  Google Scholar 

  • Meadows GG (2012) Diet, nutrients, phytochemicals, and cancer metastasis suppressor genes. Cancer Metastasis Rev 31:441–454

    Article  CAS  PubMed  Google Scholar 

  • Miron D, Shaffer AA (1991) Sucrose Phosphate Synthase, Sucrose Synthase, and Invertase activities in developing fruit of Lycopersicum esculemtum Mill. and the sucrose accumulating Lycopersicum hirsutum Humb. and Bonpl. Plant Physiol 95:623–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos JHR (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monforte AJ, Tanksley SD (2000) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813

    Article  CAS  PubMed  Google Scholar 

  • Montgomery J, Wittwer CT, Palais R, Zhou L (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2:59–66

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt TC, Tanksley SD (2001) fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosyntate distribution. Plant Physiol 127:575–583

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

    CAS  PubMed  Google Scholar 

  • Powell ALT, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas K, Ashrafi H, Pons C, Fernández-Muñoz R, Vicente A, Lopez-Baltazar J, Barry CS, Liu Y, Chetelat R, Granell A, Van Deynze A, Giovannoni JJ, Bennett AB (2012) Uniform ripening encodes a golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336:1711–1715

    Article  CAS  PubMed  Google Scholar 

  • Raiola A, Rigano MM, Calafiore R, Frusciante L, Barone A (2014) Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediat Inflamm 2014:139873

    Article  Google Scholar 

  • Rick CM (1974) High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgardia 42:493–510

    Article  Google Scholar 

  • Rodríguez-López MJ, Garzo E, Bonani JP, Fereres A, Fernández-Muñoz R, Moriones E (2011) Whitefly resistance traits derived from the wild tomato Solanum pimpinellifolium affect the preference and feeding behavior of Bemisia tabaci and reduce the spread of Tomato yellow leaf curl virus. Phytopathology 10:1191–1201

    Article  Google Scholar 

  • Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTL for physical and chemical traits. Theor Appl Genet 102:259–272

    Article  CAS  Google Scholar 

  • Salinas M, Capel C, Alba JM, Mora B, Cuartero J, Fernández-Muñoz R, Lozano R, Capel J (2013) Genetic mapping of two QTL from the wild tomato Solanum pimpinellifolium L. controlling resistance against two-spotted spider mite (Tetranychus urticae Koch). Theor Appl Genet 126:83–92

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Zhang L, Nino-Liu D, Ashrafi H, Foolad MR (2008) A Solanum lycopersicum × Solanum pimpinellifolium linkage map of tomato displaying genomic locations of R-Genes, RGAs, and candidate resistance/defense-response ESTs. Int J Plant Genomics 2008:926090

    Article  PubMed Central  PubMed  Google Scholar 

  • Smulders MJM, Bredemeijer G, RusKortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272

    Article  CAS  Google Scholar 

  • Stevens MA, Rick CM (1986) Genetics and breeding. In: Athernon JG, Rudich J (eds) The tomato crop. A scientific basis for improvement. Chapman and Hall, London, pp 35–109

    Google Scholar 

  • Stevens MA, Kader AA, Albright-Holton M (1977) Intercultivar variation in composition of locular and pericarp portions of fresh market tomatoes. J Am Soc Horti Sci 102:689–692

    CAS  Google Scholar 

  • Stevens R, Buret M, Philippe D, Garchely C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Vallverdú-Queral A, Medina-Remón A, Martínez-Huélamo M, Jaúregui O, Andres-Lacueva C, Lamuela-Raventos RM (2011) Phenolic profile and hydrophilic antioxidant capacity as chemotaxonomic markers of tomato varieties. J Agric Food Chem 59:3994–4001

    Article  Google Scholar 

  • Van der Hoeven R, Ronnind C, Giovannoni JJ, Martin G, Tanksley SD (2002) Deductions about the number, organization and evolution of genes in the tomato geneme based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456

    Article  PubMed Central  PubMed  Google Scholar 

  • van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Villalta I, Reina-Sanchez A, Cuartero J, Carbonell EA, Asins MJ (2005) Comparative microsatellite linkage analysis and genetic structure of two populations of F6 lines derived from Lycopersicon pimpinellifolium and L. cheesmanii. Theor Appl Genet 110:881–894

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTL. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Ranc N, Muños S, Rolland S, Bouchet JP, Desplat N, Le Paslier MC, Liang Y, Brunel D, Causse M (2013) Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor Appl Genet 126:567–581

    Article  PubMed  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTL network: mapping and visualizing genetic architecture of complex trait in experimental populations. Bioinformatics 10:721–723

    Article  Google Scholar 

  • Yates HE, Frary A, Doganlar S, Frampton A, Eannetta NT, Uhlig J, Tanksley SD (2004) Comparative fine mapping of fruit quality QTL on chromosome 4 introgressions derived from two wild tomato species. Euphytica 135:283–296

    Article  CAS  Google Scholar 

  • Zou L, Li H, Ouyang B, Zhang J, Ye Z (2006) Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci 170:120–127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr. Fernando Yuste-Lisbona and Dr. Antonio Monforte for critical review of the manuscript. This work was funded by the ESPSOL project from the Fundación Genoma of the Spanish Ministerio de Ciencia y Tecnología. We also thank research facilities provided by the Campus de Excelencia Internacional Agroalimentario (CeiA3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Lozano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by H.-Q. Ling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2015_2563_MOESM1_ESM.pdf

Supplementary Fig. 1 Blox plot representation of the analyzed fruit quality traits (Fruit weight; Titriable acidity; pH; Citric acid; Malic acid; Total soluble solid; Glucose; Fructose; Fructose/Glucose; Beta-carotene; Lycopene). Center lines show the average values and box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; outliers are represented by dots. Depending on the trait considered, the number of sample points ranged from 163 to 169 in the first growing cycle, and it was 169 in the second growing cycle (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capel, C., Fernández del Carmen, A., Alba, J.M. et al. Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L.. Theor Appl Genet 128, 2019–2035 (2015). https://doi.org/10.1007/s00122-015-2563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2563-4

Keywords

Navigation