Skip to main content
Log in

Molecular cytogenetic identification of B genome chromosomes linked to blackleg disease resistance in Brassica napus × B. carinata interspecific hybrids

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Provide evidence that the Brassica B genome chromosome B3 carries blackleg resistance gene, and also the B genome chromosomes were inherited several generations along with B. napus chromosomes.

Abstract

Blackleg disease caused by fungus Leptosphaeria maculans causes significant yield losses in Brassica napus. Brassica carinata possesses excellent resistance to this disease. To introgress blackleg resistance, crosses between B. napus cv. Westar and B. carinata were done. The interspecific-hybrids were backcrossed twice to Westar and self-pollinated three times to produce BC2S3 families. Doubled haploid lines (DH1) were produced from one blackleg resistant family. SSR markers were used to study the association between B genome chromosome(s) and blackleg resistance. The entire B3 chromosome of B. carinata was associated with blackleg resistance in DH1. A second DH population (DH2) was produced from F1s of resistant DH1 lines crossed to blackleg susceptible B. napus cv. Polo where resistance was found to be associated with SSR markers from the middle to bottom of the B3 and top of the B8 chromosomes. The results demonstrated that the B3 chromosome carried gene(s) for blackleg resistance. Genomic in situ hybridization (GISH) and GISH-like analysis of the DH2 lines revealed that susceptible lines, in addition to B. napus chromosomes, possessed one pair of B genome chromosomes (2n = 40), while resistant lines had either one (2n = 40) or two pairs (2n = 42) of B chromosomes. The molecular and GISH data suggested that the B chromosome in the susceptible lines was B7, while it was difficult to confirm the identity of the B chromosomes in the resistant lines. Also, B chromosomes were found to be inherited over several generations along with B. napus chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ansan-Melayah D, Balesdent MH, Delourme R, Pilet ML, Tanguy X, Renard M, Rouxel T (1998) Genes for race-specific resistance against blackleg disease in Brassica napus L. Plant Breeding 117:373–378

    Article  Google Scholar 

  • Attia T, Röbbelen G (1986a) Cytogenetic relationship within cultivated Brassica analyzed in amphihaploids from the three diploid ancestors. Can J Genet Cytol 28(3):323–329

    Google Scholar 

  • Attia T, Röbbelen G (1986b) Meiotic pairing in haploids and amphidiploids of spontaneous versus synthetic origin in rape, Brassica napus L. Can J Genet Cytol 28(3):330–334

    Google Scholar 

  • Attia T, Busso C, Röbbelen G (1987) Digenomic triploids for an assessment of chromosome relationships in the cultivated diploid Brassica species. Genome 29(2):326–330

    Article  Google Scholar 

  • Axelsson T, Bowman CM, Sharpe AG, Lydiate DJ, Lagercrantz U (2000) Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome 43:679–688

    Article  CAS  PubMed  Google Scholar 

  • Balesdent MH, Attard H, Ansan-Melayah D, Delourme D, Renard R, Rouxel M (2001) Genetic control and host range of avirulence toward Brassica napus cultivars Quinta and Jet Neuf in Leptosphaeria maculans. Phytopathology 91:70–76

    Article  CAS  PubMed  Google Scholar 

  • Balesdent MH, Attard A, Kuhn AL, Rouxel T (2002) New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans. Phytopathology 92:1122–1133

    Article  CAS  PubMed  Google Scholar 

  • Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, Chevre AM, Leflon M, Rouxel T (2013) The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytol 198:887–898. doi:10.1111/nph.12178

    Article  CAS  PubMed  Google Scholar 

  • Brun H, Levivier S, Somda I, Ruer D, Renard M, Chevre AM (2000) A field method for evaluating the potential durability of new resistance sources: application to the Leptosphaeria maculansBrassica napus pathosystem. Phytopathology 90:961–966

    Article  CAS  PubMed  Google Scholar 

  • Brun H et al (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185(1):285–299. doi:10.1111/j.1469-8137.2009.03049.x

    Article  PubMed  Google Scholar 

  • Busso C, Attia T, Röbbelen G (1987) Trigenomic combinations for the analysis of meiotic control in the cultivated Brassica species. Genome 29:331–333

    Article  Google Scholar 

  • Chèvre AM, This P, Eber E, Deschamps M, Renard M, Delseny M, Quiros CE (1991) Characterization of disomic addition lines Brassica napus-Brassica nigra by isozyme, fatty acid, and RFLP markers. Theor Appl Genet 81(43):49

    Google Scholar 

  • Chèvre AM, Ever F, This P, Barret P, Tanguy X, Brun H, Delseny M, Renard M (1996) Characterization of Brassica nigra chromosomes and of blackleg resistance in B. napus-B. nigra addition lines. Plant Breeding 115:113–118. doi:10.1111/j.1439-0523.1996.tb00884.x

    Article  Google Scholar 

  • Chèvre AM, Barret P, Eber F, Dupuy P, Brun PH, Tanguy X, Renard M (1997) Selection of stable Brassica napus-B. Juncea recombinant lines resistant to blackleg (Leptosphaeria maculans). 1. Identification of molecular markers, chromosomal and genomic origin of the introgression. Theor Appl Genet 95:1104–1111

    Article  Google Scholar 

  • Christianson JA, Rimmer SR, Good AG, Lydiate DJ (2006) Mapping genes for resistance to Leptosphaeria maculans in Brassica juncea. Genome 49:30–41. doi:10.1139/G05-085

    Article  CAS  PubMed  Google Scholar 

  • Delourme R, Eber F, Renard M (1991) Radish cytoplasmic male sterility in rapeseed: breeding restorer lines with a good female fertility. In: Proceedings of 8th Int. Rapeseed, Congress Vol 5, Saskatoon, Canada, pp 1506–1510

  • Delourme R, Pilet-Nayel MN, Archipiano M, Horvais R, Tangui X, Rouxel T, Brun H, Renard M, Balesdent MH (2004) A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus. Phytopathology 94:578–583

    Article  CAS  PubMed  Google Scholar 

  • Delourme R, Chevre AM, Brun H, Rouxel T, Balesdent MH, Dias JS, Salisbury P, Renard M, Rimmer SR (2006) Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). Eur J of Plant Path 114:41–52

    Article  Google Scholar 

  • Delwiche PA (1980) Aspects of blackleg (Leptosphaeria maculans) resistance to rapeseed Brassica napus. PhD Thesis, University of Wisconsin, Madison

  • Dhingra OD, Sinclair JB (1985) Basic plant pathology methods. CRC Press Inc, Boca Raton, p 355

    Google Scholar 

  • Dion Y, Gugel RK, Rakow GFW, Séguin-Swartz G, Landry BS (1995) RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeria maculans (Desm.) Ces. et de Not.] in canola (Brassica napus L.). Theor Appl Genet 91:1190–1194

    Article  CAS  PubMed  Google Scholar 

  • Dixelius C (1999) Inheritance of the resistance to Leptosphaeria maculans of Brassica nigra and B. juncea in near-isogenic lines of B. napus. Plant Breeding 118:151–156

    Article  Google Scholar 

  • Dixelius C, Glimelius K (1995) The use of somatic hybridization for interspecies transfer of plant disease resistance. In: Reuveni R (ed) Novel approaches to integrated pest management. Lewis Publications, Michigan, pp 75–93

    Google Scholar 

  • Dixelius C, Wahlberg S (1999) Resistance to Leptosphaeria maculans is conserved in a specific region of the Brassica B genome. Theor Appl Genet 99:368–372

    Article  Google Scholar 

  • Fernando WGD, Chen Y (2003) First report on the presence of Leptosphaeria maculans pathogenicity group-3, the causal agent of blackleg of canola in Manitoba. Plant Dis 87:1268

    Article  Google Scholar 

  • Fernando WGD, Chen Y, Ghanbarnia K (2007) Breeding for blackleg resistance: the biology and epidemiology. Adv Bot Res 45:271–311

    Article  CAS  Google Scholar 

  • Ferreira ME, Rimmer SR, Williams PH, Osborn TC (1995) Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85(2):213–217

    Article  CAS  Google Scholar 

  • Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15. doi:10.1007/s10658-005-2233-5

    Article  Google Scholar 

  • Glimelius K (1999) Somatic hybridization. In: Gomez-Campo C (ed) Biology of Brassica cenospecies. Elsevier, New York, pp 107–148

    Chapter  Google Scholar 

  • Gugel RK, Petrie GA (1992) History, occurrence, impact, and control of blackleg of rapeseed. Can J Plant Pathol 14:36–45. doi:10.1080/07060669209500904

    Article  Google Scholar 

  • Hayward A, McLanders J, Campbell E, Edwards D, Batley J (2012) Genomic advances will herald new insights into the Brassica: Leptosphaeria maculans pathosystem. Plant Biol 14(Suppl. 1):1–10. doi:10.1111/j.1438-8677.2011.00481.x

    Article  CAS  PubMed  Google Scholar 

  • Howell EC, Barker G, Jones GH, Kearsey MJ, King GJ et al (2002) Integration of the cytogenetic and genetic linkage maps of Brassica oleracea. Genetics 161:1225–1234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Howlett BJ (2004) Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans. Can J Plant Pathol 26:245–252

    Article  Google Scholar 

  • Kebede B, Thiagarajah MR, Zimmer C, Rahman MH (2010) Improvement of open-pollinated spring rapeseed (Brassica napus L.) through introgression of genetic diversity from winter rapeseed. Crop Sci 50:1236–1243

    Article  Google Scholar 

  • Kutcher HR, Keri M, McLaren DL, Rimmer SR (2007) Pathogenic variability of Leptosphaeria maculans in western Canada. Can J Plant Pathol 29:388–393

    Article  Google Scholar 

  • Kutcher HR, Fernando WGD, Turkington TK, McLaren DL (2011) Best Management Practices for Blackleg Disease of Canola. Prairie Soils Crops J 4:122–134

    Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1995) RFLP mapping in Brassica nigra indicates differing recombination rates in male and female meioses. Genome 38:255–264

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leflon M, Eber F, Letanneur JC et al (2006) Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theor Appl Genet 113:1467–1480

    Article  CAS  PubMed  Google Scholar 

  • Li H, Sivasithamparam K, Barbetti MJ (2003) Breakdown of a Brassica rapa subsp sylvestris single dominant blackleg resistance gene in Brassica napus rapeseed by Leptosphaeria maculans field isolates in Australia. Plant Dis 87(6):752

    Article  Google Scholar 

  • Li M, Qian W, Meng J, Li Z (2004) Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Res 12:417–426

    Article  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mason AS, Huteau V, Eber F, Coriton O, Yan G, Nelson MN, Cowling WA, Chevre AM (2010) Genome structure affects the rate of autosyndesis and allosyndesis in AABC, BBAC and CCAB Brassica interspecific hybrids. Chromosome Res 18:655–666

    Article  CAS  PubMed  Google Scholar 

  • Mason AS, Nelson MN, Castello MC, Yan G, Cowling WA (2011) Genotypic effects on the frequency of homoeologous and homologous recombination in Brassica napus × B. carinata hybrids. Theor Appl Genet 122(3):543–553

    Article  PubMed  Google Scholar 

  • Mayerhofer R, Bansal VK, Thiagarajah MR, Stringam GR, Good AG (1997) Molecular mapping of resistance to Leptosphaeria maculans in Australian cultivars of Brassica napus. Genome 40:294–301

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal VK, Good AG, Parkin AP (2005) Complexities of chromosome landing in a highly duplicated genome: toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics 171:1977–1988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Navabi ZK, Parkin IA, Pires JC, Xiong Z, Thiagarajah MR, Good AG, Rahman MH (2010) Introgression of B-genome chromosomes in a doubled haploid population of Brassica napus × B. carinata. Genome 53(8):619–629. doi:10.1139/G10-039

    Article  CAS  PubMed  Google Scholar 

  • Navabi ZK, Stead KE, Pires JC, Xiong Z, Sharpe AG, Parkin IAP, Rahman MH, Good AG (2011) Analysis of B-genome chromosome introgression in interspecific hybrids of Brassica napus × B. carinata. Genetics 187:659–673. doi:10.1534/genetics.110.124925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V et al (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genom 9(1):113. doi:10.1186/1471-2164-9-113

    Article  Google Scholar 

  • Plieske J, Struss D, Robbelen G (1998) Inheritance of resistance derived from the B genome of Brassica against Phoma lingam in rapeseed and the development of molecular markers. Theor Appl Genet 97:929–936

    Article  CAS  Google Scholar 

  • Rahman H, Harwood J, Weselake R (2013) Increasing seed oil content in Brassica species through breeding and biotechnology. Lipid Tech 25:182–185

    Article  Google Scholar 

  • Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2007) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet 115:807–817. doi:10.1007/s00122-007-0610-5

    Article  CAS  PubMed  Google Scholar 

  • Rimmer SR (2006) Resistance genes to Leptosphaeria maculans in Brassica napus. Can J Plant Pathology 28:288–297

    Article  Google Scholar 

  • Rimmer SR, Buchwaldt L (1995) Diseases. In: Kimber D, McGregor DI (eds) Brassica oilseeds production and utilization. CAB International, Wallingford, pp 111–140

    Google Scholar 

  • Rimmer SR, van den Berg CGJ (1992) Resistance of oilseed Brassica spp. to blackleg caused by Leptosphaeria maculans. Can J Plant Pathol 14:56–66. doi:10.1080/07060669209500906

    Article  Google Scholar 

  • Rimmer SR, Borhan MH, Zhu B, Somers D (1999) Mapping resistance genes in Brassica napus to Leptosphaeria maculans. “New horizons for an old crop.” In: Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 Sept 1999

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic Publications, Dordrecht, pp 1–10

    Google Scholar 

  • Rouxel T, Penaud A, Pinochet X, Brun H, Gout L, Delourme R, Schmit J, Balesdent MH (2003) A ten-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene in oilseed rape. Eur J Plant Pathol 109:871–881

    Article  CAS  Google Scholar 

  • Roy NN (1978) A study on disease variation in the population of an interspecific cross of Brassica juncea L. × B. napus. L. Euphytica 27:145–149

    Article  Google Scholar 

  • Roy NN (1984) Interspecific transfer of Brassica juncea type high blackleg resistance to Brassica napus. Euphytica 33(2):295–303

    Article  Google Scholar 

  • Sacristan MD, Gerdemann M (1986) Different behavior of Brassica juncea and B. carinata as sources of Phoma lingam resistance in experiments of interspecific transfer to B. napus. Plant Breed 97:304–314

    Article  Google Scholar 

  • Schelfhout CJ, Snowdon R, Cowling WA, Wroth JM (2006) Tracing B-genome chromatin in Brassica napus × B. juncea interspecific progeny. Genome 49(11):1490–1497. doi:10.1139/G06-103

    Article  CAS  PubMed  Google Scholar 

  • Sjodin C, Glimelius K (1989a) Transfer of resistance against P. lingam to Brassica napus L. by asymmetric somatic hybridization and toxin selection. Theor Appl Genet 78:513–520

    Article  CAS  PubMed  Google Scholar 

  • Sjodin C, Glimelius K (1989b) Brassica naponigra, a somatic hybrid resistant to Phoma lingam. Theor Appl Genet 77:651–656

    CAS  PubMed  Google Scholar 

  • Sjödin C, Glimelius K (1988) Screening for resistance to blackleg Phoma lingarn (Tode ex Fr.) Desm. within Brassicaceae. J Phytopathol 123:322–332

    Article  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLPs). 1. Genome evolution of diploid and amphidiploid species. Theor Appl Genet 75:784–794

    Article  CAS  Google Scholar 

  • Sprague SJ, Balesdent MH, Brun H, Hayden HL, Marcroft SJ, Pinochet X, Rouxel T, Howlett BJ (2006) Major gene resistance in Brassica napus (oilseed rape) is overcome by changes in virulence of populations of Leptosphaeria maculans in France and Australia. Eur J Plant Pathol 114:33–40. doi:10.1007/s10658-005-3683-5

    Article  Google Scholar 

  • Struss D, Bellin U, Robbelen G (1991) Development of B-genome chromosome addition lines of B. napus using different interspecific Brassica hybrids. Plant Breeding 106(3):209–214. doi:10.1111/j.1439-0523.1991.tb00503.x

    Article  Google Scholar 

  • Struss D, Quiros CF, Plieske J, Röbbelen G (1996) Construction of Brassica B genome synteny groups based on chromosomes extracted from three different sources by phenotypic, isozyme and molecular markers. Theor Appl Genet 93:1026–1032

    Article  CAS  PubMed  Google Scholar 

  • Waara S, Glimelius K (1995) The potential of somatic hybridization in crop breeding. Euphytica 85:217–233

    Article  Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae)–Chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    Article  CAS  PubMed  Google Scholar 

  • West JS, Kharbanda PD, Barbetti MJ, Fitt BDL (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol 50:10–27. doi:10.1046/j.1365-3059.2001.00546.x

    Article  Google Scholar 

  • Yu F, Lydiate DJ, Rimmer SR (2005) Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet 110:969–979

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Lydiate DJ, Rimmer SR (2008) Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris. Genome 51:64–72

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Gugel RK, Kutcher HR, Peng G, Rimmer SR (2013) Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus x B. rapa subsp. Sylvestris. Theor Appl Genet 126(2):307–315

    Article  CAS  PubMed  Google Scholar 

  • Zhu JS, Struss D, Robbelen G (1993) Studies on resistance to Phoma lingam in Brassica napus-Brassica nigra addition lines. Plant Breeding 111:192–197. doi:10.1111/j.1439-0523.1993.tb00629.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Alberta Agricultural Research Institute (AARI), Alberta Crop Industry Development Fund (ACIDF), Alberta Canola Producers Commission (ACPC), Agriculture and Food Council of Alberta and Canola Agronomic Research Program (Alberta Canola Producers Commission, Manitoba Canola Growers Association, SaskCanola and the Canola Council of Canada) for financial support to this project. We also thank Mohan Thiagarajah, Marnie Newell, Julie Bernier, Zahidur Rahman, An Vo, and many others who have contributed in various aspects of the project.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments herein comply with the current laws of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habibur Rahman.

Additional information

Communicated by R. G. F. Visser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2014_2298_MOESM1_ESM.doc

Polyacrylamide gels showing the whole B3 chromosome co-segregate with cotyledon resistance in DH1 lines. In case of DH2, the SSR markers sJ0954 and sJ7166 gave the B. napus profile while sB0860A failed to amplify genomic DNA in both resistant and susceptible lines. This suggests that the top of the B3 chromosome was lost or deleted in the DH2 lines. Thus, only the middle to bottom segment (from sB1728 to sB2596, represented by dotted oval) of the B3 chromosome co-segregated with blackleg cotyledon resistance in DH2 (DOC 691 kb)

122_2014_2298_MOESM2_ESM.doc

Polyacrylamide gels showing that the two SSR markers (sB23190a and sJ8126b) from the top of the B7 chromosome amplified genomic DNA in both resistant and susceptible DH1 and DH2 lines to give B. napus profile while the remaining four (sB1822, sJ7046, sB1752 and sJ8469a) markers from middle to bottom were B-genome-specific and amplified the resistant and susceptible DH1 and DH2 lines as well. Therefore, either the whole or middle to bottom part of the B7 chromosome was present in both DH1 and DH2 lines. None of the SSR markers from the B7 chromosome were found to be linked to blackleg resistance in these two DH populations (DOC 667 kb)

122_2014_2298_MOESM3_ESM.doc

Polyacrylamide gels showing SSR markers, either specific to B. carinata or amplified both B. napus and B. carinata, spanning the entire B8 chromosome was present in both resistant and susceptible DH1 lines. In case of the DH2 lines, three markers from the top segment of the B8 chromosome (markers sJ7434 to sJ6846) co-segregated with blackleg cotyledon resistance in this population (but not in DH1); two SSR markers (sJ3302R and sJ03104) from the middle of the chromosome gave B-genome-specific bands and two markers (sA0499F and sJ1827a) from the bottom of the chromosome gave B. napus/B. carinata profile. This suggests that the whole B8 chromosome was present in the resistant and susceptible DH1 lines. In DH2, chromosome segment from the middle to bottom of B8 was present in both the resistant and susceptible lines, while top of this chromosome co-segregated with cotyledon resistance (top of B8 co-segregated with middle to bottom of B3) (DOC 784 kb)

122_2014_2298_MOESM4_ESM.doc

(a-f) FISH-BAC/GISH labelling of mitotic chromosome spreads in susceptible DH2 lines with 20 bivalents. Chromosomes painted red are from the B genome. Based on the molecular and cytogenetic data we speculate that the extra B chromosome in the susceptible DH2 lines is B7 (a-c) Susceptible DH line 1152-025 (2n=40) and (d-f) 1152-033 (2n=40). Bars: 5μm (DOC 549 kb)

122_2014_2298_MOESM5_ESM.doc

(a-i) FISH-BAC/GISH labelling of mitotic chromosome spreads in resistant DH2 lines with 20 bivalents. Chromosomes painted red are from the B genome. Based on the molecular and cytogenetic data we speculate the extra B genome chromosome in the resistant DH2 lines with 2n = 40 could be the B3, B7 or B8 chromosomes. (a-c) Resistant DH line 1152-027 (d-f) 1152-028, and (g-i) 1152-030 Bars: 5μm (DOC 701 kb)

122_2014_2298_MOESM6_ESM.doc

(a-i) FISH-BAC/GISH labelling of mitotic chromosome spreads in resistant DH2 lines with 21 bivalents. Chromosomes painted red are from the B genome. Based on the molecular and cytogenetic data we speculate the two B genome chromosomes in the resistant DH2 lines with 2n = 42 are the B7 and B3 chromosomes (a-c) Resistant DH line 1152-031, (d-f) 1152-046 and (g-i) 1152-040. Bars: 5μm (DOC 590 kb)

Supplementary material 7 (XLSX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fredua-Agyeman, R., Coriton, O., Huteau, V. et al. Molecular cytogenetic identification of B genome chromosomes linked to blackleg disease resistance in Brassica napus × B. carinata interspecific hybrids. Theor Appl Genet 127, 1305–1318 (2014). https://doi.org/10.1007/s00122-014-2298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2298-7

Keywords

Navigation