Skip to main content
Log in

Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L.

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

This study focuses on the expansion of Phaseolus vulgaris in Europe. The pathways of distribution of beans into and across Europe were very complex, with several introductions from the New World that were combined with direct exchanges between European and other Mediterranean countries. We have analyzed here six chloroplast microsatellite (cpSSR) loci and two unlinked nuclear loci (for phaseolin types and Pv-shatterproof1). We have assessed the genetic structure and level of diversity of a large collection of European landraces of P. vulgaris (307) in comparison to 94 genotypes from the Americas that are representative of the Andean and Mesoamerican gene pools. First, we show that most of the European common bean landraces (67%) are of Andean origin, and that there are no strong differences across European regions for the proportions of the Andean and Mesoamerican gene pools. Moreover, cytoplasmic diversity is evenly distributed across European regions. Secondly, the cytoplasmic bottleneck that was due to the introduction of P. vulgaris into the Old World was very weak or nearly absent. This is in contrast to evidence from nuclear analyses that have suggested a bottleneck of greater intensity. Finally, we estimate that a relatively high proportion of the European bean germplasm (about 44%) was derived from hybridization between the Andean and Mesoamerican gene pools. Moreover, although hybrids are present everywhere in Europe, they show an uneven distribution, with high frequencies in central Europe, and low frequencies in Spain and Italy. On the basis of these data, we suggest that the entire European continent and not only some of the countries therein can be regarded as a secondary diversification center for P. vulgaris. Finally, we outline the relevance of these inter-gene pool hybrids for plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta-Gallegos JA, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47(S3):S44–S59

    Google Scholar 

  • Angioi SA, Rau D, Rodriguez M, Logozzo G, Desiderio F, Papa R, Attene G (2009a) Nuclear and chloroplast microsatellite diversity in Phaseolus vulgaris L. from Sardinia (Italy). Mol Breed 23:413–429

    Article  CAS  Google Scholar 

  • Angioi SA, Desiderio F, Rau D, Bitocchi E, Attene G, Papa R (2009b) Development and use of chloroplast microsatellites in Phaseolus spp. and other legumes. Plant Biol 11:598–612

    Article  CAS  PubMed  Google Scholar 

  • Arroyo-Garcia R, Lefort F, de Andrés F, Ibanez J, Borrego J, Jouve N, Cabello F, Martìnez-Zapater JM (2002) Chloroplast microsatellite polymorphisms in Vitis species. Genome 45:1142–1149

    Article  CAS  PubMed  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  PubMed  Google Scholar 

  • Beebe S, Skroch PW, Tohme J, Duque MC, Pedraza F, Nienhuis J (2000) Structure of genetic diversity between common bean landraces of Middle American origin based on correspondence analysis of RAPD. Crop Sci 40:264–273

    Article  Google Scholar 

  • Beebe S, Rengifo J, Gaitan E, Duque MC, Tohme J (2001) Diversity and origin of Andean landraces of common bean. Crop Sci 41:854–862

    Article  Google Scholar 

  • Berglund-Brücher B, Brücher H (1976) The South American wild bean (Phaseolus aborigenus Burk.) as an ancestor of the common bean. Econ Bot 30:257–272

    Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Staub JE (2003) The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. Theor Appl Genet 107:757–767

    Article  CAS  PubMed  Google Scholar 

  • Cuenca A, Escalante E, Pinero D (2003) Long-distance colonization, isolation by distance, and historical demography in a relictual Mexican pinyon pine (Pinus nelsonii Shaw) as revealed by paternally inherited genetic markers (cpSSRs). Mol Ecol 12:2087–2097

    Article  CAS  PubMed  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Elbert D, Peakall R (2009) Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Resour 9:673–690

    Article  CAS  Google Scholar 

  • Ennos RA, Sinclair WT, Hu XS, Langdon A (1999) Using organelle markers to elucidate the history, ecology and evolution of plant populations. In: Hollingsworth PM, Bateman RM, Gornall RJ (eds) Molecular systematics and plant evolution. Taylor & Francis, London, pp 1–19

    Google Scholar 

  • Escribano MR, Santalla M, Casquero PA, De Ron AR (1998) Patterns of genetic diversity in landraces of common bean (Phaseolus vulgaris L.) from Galicia. Plant Breed 117:49–56

    Article  Google Scholar 

  • Gepts P (1998) Origin and evolution of common bean: past events and recent trends. Hort Sci 33:1121–1130

    Google Scholar 

  • Gepts P (1999) Development of an integrated genetic linkage map in common bean (Phaseolus vulgaris L.) and its use. In: Singh S (ed) Bean breeding for the 21st century, 53–91. Kluwer, Dordrecht, pp 389–400

    Google Scholar 

  • Gepts P, Bliss FA (1985) F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J Hered 76(6):447–450

    Google Scholar 

  • Gepts P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II Europe and Africa. Econ Bot 42:86–104

    Google Scholar 

  • Gepts P, Debouck DG (1991) Origin, domestication and evolution of common bean, Phaseolus vulgaris. In: Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, Wallingford, UK, pp 4–54

    Google Scholar 

  • Gepts P, Osborne TC, Rashka K, Bliss FA (1986) Electrophoretic analysis of phaseolin protein variability in wild forms and landraces of the common bean Phaseolus vulgaris L.: evidence for two centers of domestications. Econ Bot 40:451–468

    CAS  Google Scholar 

  • Gepts P, Kmieciz K, Pereira P, Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. I The Americas. Econ Bot 42:86–104

    Google Scholar 

  • Gepts P, Papa R, Gonzales Mejia J, Acosta J, Delgado Salinas A (1999) Human effects on Phaseolus adaptation during and after domestication. In: van Raamsdonk L, den Njis J (eds) Proceeding VIIth international IOPB symposium. Amsterdam, 10–15 August

  • González AM, Rodiño AP, Santalla M, De Ron AM (2009) Genetics of intra-gene pool and inter-gene pool hybridization for seed traits in common bean (Phaseolus vulgaris L.) germplasm from Europe. Field Crop Res 112:66–76

    Article  Google Scholar 

  • Goudet J (2002) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). http://www.unil.ch/izea/softwares/fstat.html

  • Goudet J, Raymond M, de-Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    CAS  PubMed  Google Scholar 

  • Hale ML, Borland AM, Gustafsson MH, Wolff K (2004) Causes of size homoplasy among chloroplast microsatellites in closely related Clusia species. J Mol Evol 58:182–190

    Article  CAS  PubMed  Google Scholar 

  • Hurlbert SH (1971) The non-concept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Ishii T, McCouch SR (2000) Microsatellites and microsynteny in the chloroplast genomes of Oryza and eight other Gramineae species. Theor Appl Genet 100:1257–1266

    Article  CAS  Google Scholar 

  • Johnson WC, Gepts P (1999) Segregation for performance in recombinant inbred populations resulting from inter-gene pool crosses of common bean (Phaseolus vulgaris L.). Euphytica 106:45–56

    Article  Google Scholar 

  • Johnson WC, Gepts P (2002) The role of epistasis in controlling seed yield and other agronomic traits in an Andean × Mesoamerican cross of common bean (Phaseolus vulgaris L.). Euphytica 125:69–79

    Article  CAS  Google Scholar 

  • Koenig R, Gepts P (1989) Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor Appl Genet 78:809–817

    Article  Google Scholar 

  • Kwak M, Gepts P (2009) Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet 118:979–992

    Article  CAS  PubMed  Google Scholar 

  • Limongelli G, Laghetti G, Perrino P, Piergiovanni AR (1996) Variation of seed storage protein in landraces of common bean (Phaseolus vulgaris L.) from Basilicata, southern Italy. Plant Breed 119:513–516

    Google Scholar 

  • Lioi L (1989) Geographical variation of phaseolin patterns in an old world collection of Phaseolus vulgaris. Seed Sci Technol 17:317–324

    Google Scholar 

  • Logozzo G, Donnoli R, Macaluso L, Papa R, Knupffer H, Spagnoletti Zeuli PL (2007) Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genet Resour Crop Evol 54:1763–1779

    Article  Google Scholar 

  • Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998a) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963–974

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998b) Distortion of allele frequency distributions provide a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • McClean PE, Lee RK, Otto C, Gepts P, Bassett MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152

    Article  CAS  PubMed  Google Scholar 

  • McClean PE, Lee RK, Miklas PN (2004) Sequence diversity analysis of dihydroflavonol 4-reductase intron 1 in common bean. Genome 47:266–280

    Article  CAS  PubMed  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:106–131

    Article  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  Google Scholar 

  • Nodari RO, Tsai SM, Gilbertson RL, Gepts P (1993) Towards an integrated linkage map of common bean. II. Development of an RFLP-based linkage map. Theor Appl Genet 85:513–520

    Article  CAS  Google Scholar 

  • Ocampo CH, Martin JP, Ortiz JM, Sanchez-Yelamo MD, Toro O, Debouck D (2002) Possible origins of common bean (Phaseolus vulgaris L.) cultivated in Spain in relation to the wild genetic pools of Americas. Annu Rep Bean Improv Coop 45:236–237

    Google Scholar 

  • Ortwin-Sauer C (1966) The early Spanish man. University of California Press, Berkeley, pp 51–298

    Google Scholar 

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    CAS  PubMed  Google Scholar 

  • Papa R, Nanni L, Sicard D, Rau D, Attene G (2006) The evolution of genetic diversity in Phaseolus vulgaris L. In: Motley TJ, Zerega N, Cross H (eds) New approaches to the origins, evolution and conservation of crops. Darwin’s harvest. Columbia University Press, USA

    Google Scholar 

  • Paredes OM, Gepts P (1995) Extensive introgression of Middle American germplasm into Chilean common bean cultivars. Genet Resour Crop Evol 42:29–41

    Article  Google Scholar 

  • Park S, Michaels T, Myers J, Hunt D, Stewart-Williams K (1996) Outcrossing rates of common beans grow in Ontario and Idaho. Annu Rep Bean Improv Coop 39:90–91

    Google Scholar 

  • Petit R, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Petit RJ, Dumilin J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701

    Article  CAS  PubMed  Google Scholar 

  • Piergiovanni AR, Cerbino D, Brandi M (2000a) The common bean populations from Basilicata (southern Italy). An evaluation of their variation. Genet Resour Crop Evol 47:489–495

    Article  Google Scholar 

  • Piergiovanni AR, Taranto G, Pignone D (2000b) Diversity among common bean populations from the Abruzzo region (central Italy): a preliminary inquiry. Genet Resour Crop Evol 47:467–470

    Article  Google Scholar 

  • Powell W, Morgante M, McDevitt R, Vendramin G, Rafalski J (1995) Polymorphic simple-sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci USA 92:7759–7763

    Article  CAS  PubMed  Google Scholar 

  • Provan J, Russell JR, Booth A, Powell W (1999a) Polymorphic chloroplast simple-sequence repeat primers for systematic and population studies in the genus Hordeum. Mol Ecol 8:505–511

    Article  CAS  PubMed  Google Scholar 

  • Provan J, Powell W, Dewar H, Bryan G, Machray GC, Waugh R (1999b) An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity. Proc Biol Sci 266:633–639

    Article  Google Scholar 

  • Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P, Charcosset A (2003) Maize introduction into Europe: the history reviewed in the light of molecular data. Theor Appl Genet 106:895–903

    CAS  PubMed  Google Scholar 

  • Rodiño AP, Santalla M, Montero I, Casquero PA, De Ron AM (2001) Diversity in common bean (Phaseolus vulgaris L.) germplasm from Portugal. Genet Resour Crop Evol 48:409–417

    Article  Google Scholar 

  • Rodiño AP, Santalla M, De Ron AM, Singh SP (2003) A core collection of common bean from the Iberian peninsula. Euphytica 131:165–175

    Article  Google Scholar 

  • Rodiño AP, Santalla M, Gonzàlez AM, De Ron AM, Singh SP (2006) Novel genetic variation in common bean from the Iberian peninsula. Crop Sci 46:2540–2546

    Article  CAS  Google Scholar 

  • Rohlf F (2000) NTSYS pc. Numerical taxonomy system exeter publishing, Setauket

    Google Scholar 

  • Romero J, Sun SM, McLeester RC, Bliss FA, Hall TC (1975) Heritable variation in a polypeptide subunit of the major storage protein of the bean, Phaseolus vulgaris L. Plant Physiol 56:776–779

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Bitocchi E, Bellucci E, Nanni L, Rau D, Attene G, Papa R (2009) Linkage disequilibrium and population structure in wild and domesticated populations of Phaseolus vulgaris L. Evolutionary applications. Published Online July 2009. doi:10.1111/j.1752-4571.2009.00082.x

  • Santalla M, Rodiño AP, De Ron AM (2002) Allozyme evidence supporting southwester Europe as a secondary center of genetic diversity for common bean. Theor Appl Genet 104:934–944

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute Inc. (2007) JMP Software ver. 7

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L and P. coccineus L. landraces in central Italy. Plant Breed 124:464–472

    Article  CAS  Google Scholar 

  • Singh SP (2001) Broadening the genetic base of common bean cultivars: a review. Crop Sci 41:1659–1675

    Article  Google Scholar 

  • Singh SP, Nodari R, Gepts P (1991) Genetic diversity in cultivated common bean. I. allozymes. Crop Sci 31:19–23

    Article  CAS  Google Scholar 

  • Sukhotu T, Kamijima O, Hosaka K (2006) Chloroplast DNA variation in the most primitive cultivated diploid potato species Solanum stenotomum Juz. et Buk. and its putative wild ancestral species using high-resolution markers. Genet Resour Crop Evol 53:53–63

    Article  CAS  Google Scholar 

  • Sun SM, Hall TC (1975) Solubility characteristics of globulins of Phaseolus seeds in regard to their isolation and characterisation. J Agric Food Chem 23:184–189

    Article  CAS  PubMed  Google Scholar 

  • Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Mol Ecol 5:595–598

    Article  CAS  PubMed  Google Scholar 

  • Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites genetics. Genetics 169:1617–1630

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Xu DH, Abe J, Gai JY, Shimamoto Y (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor Appl Genet 105:645–653

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Blair MW, Wang S (2008) Genetic diversity of Chinese common bean Phaseolus vulgaris L.) landraces assessed with simple sequence repeats markers. Theor Appl Genet 117:629–640

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S.A. Angioi and D. Rau made equal contributions to this study, and so should be considered joint first authors. We are grateful to A.H.D. Brown for his suggestions on the statistical analyses of this study and for critical reading of the manuscript. This study was supported by the Italian Government (MIUR) Grant no. # 2005071310, Project PRIN 2005 and constituted part of the PhD thesis of S.A. Angioi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Papa.

Additional information

Communicated by A. Bervillé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tables (DOC 423 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angioi, S.A., Rau, D., Attene, G. et al. Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L.. Theor Appl Genet 121, 829–843 (2010). https://doi.org/10.1007/s00122-010-1353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1353-2

Keywords

Navigation