, Volume 118, Issue 3, pp 423-431
Date: 05 Nov 2008

Molecular mapping and characterization of BLMC, a locus for profuse wax (bloom) and enhanced cuticular features of Sorghum (Sorghum bicolor (L.) Moench.)

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Sorghum is distinct from other cereal crops due to its ability to produce profuse amount of epicuticular wax (EW or bloom) on its culm and leaves along with less permeable cuticle which are considered to be important traits contributing to abiotic stress tolerance. Here, we report the molecular mapping and characterization of BL OO M-C UTICLE (BLMC), a locus associated with production of profuse wax, using a mutant mapping population developed from a cross between BTx623 (wild type with profuse wax) and KFS2021 (a mutant with greatly reduced wax). The F2 progenies were genotyped using known and newly developed microsattelite markers to establish a molecular map of BLMC. The locus mapped to a 3.6-centimorgans (cM) interval in the terminal end of sorghum chromosome 10 with flanking markers Xsbarslbk10.47 and Xcup42. Targeted mapping delimited BLMC to as small as 0.7 cM region and facilitated identification of three cosegregating markers with the trait. The BLMC region corresponds to approximately 153,000 bp and candidate genes identified include among others an acyl CoA oxidase (a gene involved in lipid and wax biosynthesis) and seven other putative transcripts. Phenotypic characterization showed that in addition to disrupting the EW production, BLMC mutation reduced culm and leaf cuticle, increased plant death rating in the field at anthesis and significantly reduced the C:28 to C:30 free fatty acid fractions of culm and leaf EW. These results clearly support the important role of BLMC in the expression of profuse wax and enhanced cuticular features of sorghum. Genetic mapping of BLMC opened avenues for identification of genes involved in the cuticle/wax pathway of sorghum and their application for improvement of abiotic stress tolerance.

Communicated by H. T. Nguyen.