Theoretical and Applied Genetics

, Volume 116, Issue 2, pp 223–233

Using molecular markers to identify two major loci controlling carotenoid contents in maize grain

  • Subhash Chander
  • Y. Q. Guo
  • X. H. Yang
  • J. Zhang
  • X. Q. Lu
  • J. B. Yan
  • T. M. Song
  • T. R. Rocheford
  • J. S. Li
Original Paper

DOI: 10.1007/s00122-007-0661-7

Cite this article as:
Chander, S., Guo, Y.Q., Yang, X.H. et al. Theor Appl Genet (2008) 116: 223. doi:10.1007/s00122-007-0661-7

Abstract

Maize is an important source of pro-vitamin A; β-carotene, α-carotene and β-cryptoxanthin, and the non-pro-vitamin A carotenoids including lutein and zeaxanthin. In the present study, a recombinant inbred (RI) population with 233 RI lines derived from a cross between By804 and B73 was employed to detect QTL for these nutritionally important components in maize grain. High Performance Liquid Chromatography was used to measure amounts of individual carotenoids over 2 years. A genetic linkage map was constructed with 201 molecular markers. In all, 31 putative QTL including 23 for individual and 8 for total carotenoids were detected on chromosome(s) 1, 3, 5, 6, 7, 8 and 10. The notable aspect of this study was that much of the phenotypic variation in contents of carotenoids could be explained by two loci (y1 and y9), and the QTL for carotenoids elucidated the interrelationships among these compounds at the molecular level. A gene targeted marker (Y1ssr) in the candidate gene phytoene synthase 1 (psy1) tightly linked to a major QTL explaining 6.6–27.2% phenotypic variation for levels of carotenoids was identified, which may prove useful to expedite breeding for higher level of carotenoids in maize grain. This functionally characterized gene (psy1) could also be exploited for further development of functional marker for carotenoids in maize. The QTL cluster located at y9 locus may also be used for pyramiding favorable alleles controlling contents of carotenoids from diverse maize germplasm.

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Subhash Chander
    • 1
  • Y. Q. Guo
    • 1
  • X. H. Yang
    • 1
  • J. Zhang
    • 1
  • X. Q. Lu
    • 1
  • J. B. Yan
    • 1
  • T. M. Song
    • 1
  • T. R. Rocheford
    • 2
  • J. S. Li
    • 1
  1. 1.National Maize Improvement Center of ChinaChina Agricultural UniversityBeijingPeople’s Republic of China
  2. 2.Department of Crop SciencesUniversity of IllinoisUrbanaUSA