, Volume 107, Issue 3, pp 422-431
Date: 14 May 2003

Effects of native forest regeneration practices on genetic diversity in Eucalyptus consideniana

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Impacts of forest harvesting and regeneration practices on genetic diversity in the Australian native forest species Eucalyptus consideniana Maiden (yertchuk) were examined using 29 Mendelian DNA markers (18 RFLPs and 11 microsatellites). Two replicate logging coupes were studied from each of the two most commonly employed silvicultural treatments: clear felling with aerial re-sowing and the seed tree system. For each coupe, genetic diversity measures were compared between a sample of the sapling regeneration and a corresponding control sample from bordering unharvested trees. When calculations were performed over all 29 loci, significant reductions of allelic richness (AR), effective number of alleles (AE) and/or expected heterozygosity (HE) were detected on one or both of seed tree coupes, but on neither of the clear falls. When calculations were performed over the 11 microsatellites alone, all three measures, AR, AE and HE, were significantly reduced on both of the seed replicates but on neither of the two clear falls. In contrast, when the RFLPs were examined separately, there were no significant reductions of diversity on either of the two seed tree coupes or on the two clear falls. These results suggest that genetic erosion is more likely under the seed tree system than under clear-felling with aerial re-sowing and that there is greater statistical power to detect it with microsatellites than with RFLPs. A Monte Carlo simulation to test the statistical significance of the number of apparently lost or gained alleles showed that significant losses of alleles above specified threshold frequencies occurred only in the two seed tree replicates. Three of the four control and regeneration population pairs were significantly differentiated, as indicated by exact tests or by pairwise FST estimates. Comparisons of CONTML dendrograms, constructed for the regeneration populations only versus the control populations only, indicated that genetic drift was significantly promoted under forest management. No significant decreases in observed heterozygosity, or increases in the panmictic index (f), were observed in any of the comparisons suggesting that inbreeding was not promoted by a single rotation of forest management.

Communicated by D.B. Neale