Skip to main content
Log in

Grundlagen perinataler Prägung und Programmierung

Principles of perinatal imprinting and programming

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Leben ist grundsätzlich ein permanent umweltabhängiger Entwicklungsprozess. Sogar die Genexpressivität kann (auch sequenzunabhängig) durch Umwelteinflüsse dauerhaft modifiziert werden (Epigenomik). Derartige Gen-Umwelt-Interaktionen haben während prä- und neonataler, kritischer Entwicklungsphasen offenbar besonders nachhaltige, dauerhafte Konsequenzen für das langfristige, individuelle Erkrankungsrisiko. Mechanistisch scheint es sich hierbei um einen prinzipiell normativen, vegetativen Konditionierungsprozess zu handeln („vegetative Prägung“), bei dem epigenomisch und mikrostrukturell durch die Quantität und die Qualität von umweltabhängigen Entwicklungssignalen (Ernährung, Hormone, Xenobiotika etc.) Funktionsweisen von der subzellulären bis hin zur kybernetisch regulierten, organismischen Gesamtebene „geprägt“ werden, im Sinne einer Konditionierung, v. a. von Genom und Gehirn. So können z. B. Über- und Fehlernährung während kritischer Entwicklungsphasen das Erkrankungsrisiko für Übergewicht, Adipositas, Diabetes mellitus und kardiovaskuläre Erkrankungen dauerhaft erhöhen, insbesondere infolge einer neuroendokrinen Fehlkonditionierung. Ähnliches wurde für perinatal erworbene Störungen der Stressregulation und anderer fundamentaler Lebensfunktionen beschrieben. Disstress, Disnutrition und Disruptoren (natürliche und anthropogene Xenobiotika) scheinen als fundamentale, grundsätzliche Störgrößen perinataler Prägungsprozesse wirken zu können („Disstress-Disnutrition-Hypothese“ und „3-D-Konzept perinataler Fehlprägung“). Hieraus ergeben sich für die Zukunft mannigfaltige Chancen und Herausforderungen einer genuinen, primären Prävention im Rahmen der Entwicklungsmedizin, durch das Erkennen, Vermeiden und/oder die adäquate Behandlung maternofetaler und/oder frühpostnataler Fehlexpositionen.

Abstract

Life is principally a process of permanent environment-dependent development. Developmental origins of health and diseases are particularly sustainable if shaped during critical periods in prenatal and early postnatal life. The key to the approach is an environment-dependent epigenomic and microstructural conditioning of the organism, leading to a homeostatic calibration of functional and tolerance ranges from the subcellular up to the organismic levels (vegetative imprinting). This process, in terms of a developmental vegetative “training”, serves to optimize the self-organization of an organism in order to cope with the environmental conditions during later life. It generally occurs normatively as a basic mechanism of ontogenesis. Through alterations of the prenatal and neonatal environment it may become disadvantageous or even harmful for long-term individual health. Most important and sustainable effects occur if the main regulatory instances of the organism are affected, i.e. the genome and/or the brain. For instance, perinatal overfeeding, suggesting an affluent environment, has been shown epidemiologically, clinically and experimentally to induce epigenomic and microstructural malprogramming of the hypothalamo-adipo-pancreatic system, leading to long-term increased “diabesity” risk. Similar mechanisms have been identified for conditioning of stress responsiveness and other fundamental life functions. In general, distress, disnutrition and disruptors (unfavorable xenobiotics) appear to be the fundamental risk factors of regular vegetative programming (distress-disnutrition hypothesis and 3-D concept on perinatal malimprinting), potentially leading to acquired health risks throughout later life. In the future this opens up multiple chances and challenges for a genuine, lasting, primary prevention in developmental medicine through the recognition, avoidance and/or adequate treatment of maternofetal and/or early postnatal malexposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Dörner G (1975) Perinatal hormone levels and brain organization. In: Stumpf W, Grant LD (Hrsg) Anatomical neuroendocrinology. Karger, Basel, S 245–252

  2. Dörner G (1976) Hormones and brain differentiation. Elsevier, Amsterdam

  3. Dörner G (1980) Die Ontogenese des neuroendokrinen Systems als kinetischer Prozess. Nova Acta Leopoldina NF 51:279–291

    Google Scholar 

  4. Dörner G, Plagemann A (1994) Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res 26:213–221

    Article  PubMed  Google Scholar 

  5. Francis DD, Meaney MJ (1999) Maternal care and the development of stress response. Curr Opin Neurobiol 9:128–134

    Article  CAS  PubMed  Google Scholar 

  6. Gluckman PD, Hanson MA (2008) Mismatch: the lifestyle diseases timebomb. Oxford University Press, Oxford

  7. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35:595–601

    Article  CAS  PubMed  Google Scholar 

  8. Harder T, Bergmann R, Kallischnigg G, Plagemann A (2005) Duration of breastfeeding and risk of overweight: a meta-analysis. Am J Epidemiol 162:397–403

    Article  PubMed  Google Scholar 

  9. Huurre A, Laitinen K, Rautava S et al (2008) Impact of maternal atopy and probiotic supplementation during pregnancy on infant sensitization: a double-blind placebo-controlled study. Clin Exp Allergy 38:1342–1348

    Article  CAS  PubMed  Google Scholar 

  10. Linder K, Schleger F, Ketterer C et al (2014) Maternal insulin sensitivity is associated with oral glucose-induced changes in fetal brain activity. Diabetologia 57: 1192–1198

    Article  CAS  PubMed  Google Scholar 

  11. Lorenz K (1935) Der Kumpan in der Umwelt des Vogels: der Artgenosse als auslösendes Moment sozialer Verhaltensweisen. J Ornithol 1:83

    Google Scholar 

  12. Murgatroyd C, Patchev AV, Wu Y et al (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12:1559–1566

    Article  CAS  PubMed  Google Scholar 

  13. Plagemann A (2006) Perinatal nutrition and hormone-dependent programming of food intake. Horm Res 65(Suppl 3):83–89

    Article  CAS  PubMed  Google Scholar 

  14. Plagemann A (2011) Toward a unifying concept on perinatal programming: vegetative imprinting by environment-dependent biocybernetogenesis. In: Plagemann A (Hrsg) Perinatal programming – the state of the art. De Gruyter, Berlin, S 243–282

  15. Plagemann A (2014) Perinatale Programmierung, neuro-endokrine Epigenomik und präventive Medizin – das Konzept der vegetativen Prägung. Nova Acta Leopoldina NF 120(405):197–225

    Google Scholar 

  16. Plagemann A, Harder T, Brunn M et al (2009) Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 587(20):4963–4976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Plagemann A, Harder T, Rake A et al (1999) Perinatal elevation of hypothalamic insulin, acquired malformation of hypothalamic galaninergic neurons, and syndrome x-like alterations in adulthood of neonatally overfed rats. Brain Res 836:146–155

    Article  CAS  PubMed  Google Scholar 

  18. Plagemann A, Harder T, Schellong K et al (2012) Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract Res Clin Endocrinol Metab 26:641–653

    Article  PubMed  Google Scholar 

  19. Plagemann A, Roepke K, Harder T et al (2010) Epigenetic malprogramming of the insulin receptor promoter due to developmental overfeeding. J Perinat Med 38:393–400

    CAS  PubMed  Google Scholar 

  20. Plagemann A, Staudt A, Gotz F et al (1998) Long-term effects of early postnatally administered interleukin-1-beta on the hypothalamic-pituitary-adrenal (HPA) axis in rats. Endocr Regul 32:77–85

    CAS  PubMed  Google Scholar 

  21. Prince AL, Antony KM, Ma J, Aagaard KM (2014) The microbiome and development: a mother’s perspective. Semin Reprod Med 32:14–22

    Article  PubMed  Google Scholar 

  22. Ribas-Fitó N, Torrent M, Carrizo D et al (2006) In utero exposure to background concentrations of DDT and cognitive functioning among preschoolers. Am J Epidemiol 164:955–962

    Article  PubMed  Google Scholar 

  23. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290

    Article  CAS  PubMed  Google Scholar 

  24. Szyf M (2011) Epigenetic adaptation during early life. In: Plagemann A (Hrsg) Perinatal programming – the state of the art. De Gruyter, Berlin, S 229–242

  25. Van den Bergh BR (2011) Prenatal programming of cognition and emotion in humans: from birth to age 20. In: Plagemann A (Hrsg) Perinatal programming – the state of the art. De Gruyter, Berlin, S 199–205

  26. Vom Saal FS, Nagel SC, Coe BL et al (2012) The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol Cell Endocrinol 354:74–84

    Article  Google Scholar 

  27. Waddington CH (1942) Canalisation of development and the inheritance of acquired characters. Nature 150:563–564

    Article  Google Scholar 

  28. Weaver IC, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behaviour. Nat Neurosci 7:847–854

    Article  CAS  PubMed  Google Scholar 

  29. Wu Y, Patchev AV, Daniel G et al (2014) Early-life stress reduces DNA methylation of the Pomc gene in male mice. Endocrinology 155:1751–1762

    Article  PubMed  Google Scholar 

  30. Yoo YY, Lee S, Lee HA et al (2014) Can proopiomelanocortin methylation be used as an early predictor of metabolic syndrome? Diabetes Care 37:734–739

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. A. Plagemann gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Plagemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plagemann, A. Grundlagen perinataler Prägung und Programmierung. Monatsschr Kinderheilkd 164, 91–98 (2016). https://doi.org/10.1007/s00112-015-3419-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-015-3419-3

Schlüsselwörter

Keywords

Navigation