Skip to main content
Log in

Erblich bedingte Thrombozytopenien

Inherited thrombocytopenias

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Erblich bedingte Thrombozytopenien sind eine heterogene Gruppe seltener Erkrankungen mit niedrigen Thrombozytenzahlen. Das klinische Spektrum reicht von schweren syndromalen Formen mit Multiorganbeteiligung und schweren Blutungen bis hin zu leichten, nur zufällig diagnostizierten Thrombozytopenien. Zwar konnten bei den meisten Erkrankungen Defekte in Genen beschrieben werden, die für Membranglykoproteine, für Proteine des Zytoskeletts und intrazellulärer Signalwege oder für Transkriptionsfaktoren kodieren. Trotzdem sind die zugrunde liegenden Pathomechanismen häufig noch unbekannt. Diese Zusammenfassung beschreibt pathophysiologische, klinische und diagnostische Aspekte erblich bedingter Thrombozytopenien.

Abstract

Inherited thrombocytopenias are a heterogeneous group of rare diseases characterized by reduced numbers of blood platelets. The clinical spectrum ranges from severe syndromal forms with multiorgan involvement and severe bleeding to mild conditions that may remain undetected. In most cases, defects have been described in genes coding for membrane glycoproteins, cytoskeletal components, intracellular signaling pathways, and transcription factors. However, the pathophysiologic mechanisms remain elusive in a number of diseases. This review describes pathophysiologic, clinical, and diagnostic aspects of inherited thrombocytopenias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Balduini CL, Cattaneo M, Fabris F et al. (2003) Inherited thrombocytopenias: a proposed diagnostic algorithm from the Italian Gruppo di Studio delle Piastrine. Haematologica 88: 582–592

    PubMed  Google Scholar 

  2. Ballmaier M, Germeshausen M, Schulze H et al. (2001) c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood 97: 139–146

    Article  PubMed  CAS  Google Scholar 

  3. Ballmaier M, Schulze H, Strauss G et al. (1997) Thrombopoietin in patients with congenital thrombocytopenia and absent radii: elevated serum levels, normal receptor expression, but defective reactivity to thrombopoietin. Blood 90: 612–619

    PubMed  CAS  Google Scholar 

  4. Breton-Gorius J, Favier R, Guichard J et al. (1995) A new congenital dysmegakaryopoietic thrombocytopenia (Paris-Trousseau) associated with giant platelet alpha-granules and chromosome 11 deletion at 11q23. Blood 85: 1805–1814

    PubMed  CAS  Google Scholar 

  5. Burns S, Cory GO, Vainchenker W et al. (2004) Mechanisms of WASp-mediated hematologic and immunologic disease. Blood 104: 3454–3462

    Article  PubMed  CAS  Google Scholar 

  6. Cunningham JG, Meyer SC, Fox JE (1996) The cytoplasmic domain of the alpha-subunit of glycoprotein (GP) Ib mediates attachment of the entire GP Ib-IX complex to the cytoskeleton and regulates von Willebrand factor-induced changes in cell morphology. J Biol Chem 271: 11581–11587

    Article  PubMed  CAS  Google Scholar 

  7. de Alarcon PA, Graeve JA, Levine RF et al. (1991) Thrombocytopenia and absent radii syndrome: defective megakaryocytopoiesis-thrombocytopoiesis. Am J Pediatr Hematol Oncol 13: 77–83

    Article  PubMed  Google Scholar 

  8. Derry JMJ, Ochs HD, Francke U (1994) Isolation of a novel gene mutated in Wiskott-Aldrich-Syndrome. Cell 78: 635–644

    Article  PubMed  CAS  Google Scholar 

  9. Dowton SB, Beardsley D, Jamison D et al. (1985) Studies of a familial platelet disorder. Blood 65: 557–563

    PubMed  CAS  Google Scholar 

  10. Drachman JG, Jarvik GP, Mehaffey MG (2000) Autosomal dominant thrombocytopenia: incomplete megakaryocyte differentiation and linkage to human chromosome 10. Blood 96: 118–125

    PubMed  CAS  Google Scholar 

  11. Drouin A, Favier R, Masse JM et al. (2001) Newly recognized cellular abnormalities in the gray platelet syndrome. Blood 98: 1382–1391

    Article  PubMed  CAS  Google Scholar 

  12. Favier R, Jondeau K, Boutard P et al. (2003) Paris-Trousseau syndrome: clinical, hematological, molecular data of ten new cases. Thromb Haemost 90: 893–897

    PubMed  CAS  Google Scholar 

  13. Freson K, Devriendt K, Matthijs G et al. (2001) Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 98: 85–92

    Article  PubMed  CAS  Google Scholar 

  14. Freson K, Matthijs G, Thys C et al. (2002) Different substitutions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum Mol Genet 11: 147–152

    Article  PubMed  CAS  Google Scholar 

  15. Gadzicki D, Michaelsen G, Rudolph C et al. (2004) Fluorescence in situ hybridization (FISH) using a subtelomeric 11q probe as a new diagnostic tool for congenital thrombocytopenia caused by deletions in 11q. Blood 104: 829A

    Article  CAS  Google Scholar 

  16. Gandhi MJ, Cummings CL, Drachman JG (2003) FLJ14813 missense mutation: a candidate for autosomal dominant thrombocytopenia on human chromosome 10. Hum Hered 55: 66–70

    Article  PubMed  CAS  Google Scholar 

  17. Germeshausen M, Ballmaier M, Welte K (2006) MPL mutations in 23 patients suffering from congenital amegakaryocytic thrombocytopenia: the type of mutation predicts the course of the disease. Hum Mutat 27: 296

    Article  PubMed  Google Scholar 

  18. Gilman AL, Sloand E, White JG et al. (1995) A novel hereditary macrothrombocytopenia. J Pediatr Hematol Oncol 17: 296–305

    Article  PubMed  CAS  Google Scholar 

  19. Greenhalgh KL, Howell RT, Bottani A et al. (2002) Thrombocytopenia-absent radius syndrome: a clinical genetic study. J Med Genet 39: 876–881

    Article  PubMed  CAS  Google Scholar 

  20. Hall JG (1987) Thrombocytopenia and absent radius (TAR) syndrome. J Med Genet 24: 79–83

    Article  PubMed  CAS  Google Scholar 

  21. Hall JG, Levin J, Kuhn JP et al. (1969) Thrombocytopenia with absent radius (TAR). Medicine (Baltimore) 48: 411–439

  22. Heath KE, Campos-Barros A, Toren A et al. (2001) Nonmuscle myosin heavy chain IIA mutations define a spectrum of autosomal dominant macrothrombocytopenias: May-Hegglin anomaly and Fechtner, Sebastian, Epstein, and Alport-like syndromes. Am J Hum Genet 69: 1033–1045

    Article  PubMed  CAS  Google Scholar 

  23. Heller PG, Glembotsky AC, Gandhi MJ et al. (2005) Low Mpl receptor expression in a pedigree with familial platelet disorder with predisposition to acute myelogenous leukemia and a novel AML1 mutation. Blood 105: 4664–4670

    Article  PubMed  CAS  Google Scholar 

  24. Hohlfeld P, Forestier F, Kaplan C et al. (1994) Fetal thrombocytopenia: a retrospective survey of 5,194 fetal blood samplings. Blood 84: 1851–1856

    PubMed  CAS  Google Scholar 

  25. Hord JD, Gay JC, Whitlock JA (1995) Thrombocytopenia in neonates with trisomy 21. Arch Pediatr Adolesc Med 149: 824–825

    PubMed  CAS  Google Scholar 

  26. Horvat-Switzer RD, Thompson AA (2005) HOXA11 mutation in amegakaryocytic thrombocytopenia with radio-ulnar synostosis syndrome inhibits megaka-ryocytic differentiation in vitro. Blood 106: 497A–498A

    Google Scholar 

  27. Hoyeraal HM, Lamvik J, Moe PJ (1970) Congenital hypoplastic thrombocytopenia and cerebral malformations in two brothers. Acta Paediatr Scand 59: 185–191

    Article  PubMed  CAS  Google Scholar 

  28. Hreidarsson S, Kristjansson K, Johannesson G et al. (1988) A syndrome of progressive pancytopenia with microcephaly, cerebellar hypoplasia and growth failure. Acta Paediatr Scand 77: 773–775

    Article  PubMed  CAS  Google Scholar 

  29. Ichikawa M, Asai T, Saito T et al. (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10: 299–304

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  30. Ihara K, Ishii E, Eguchi M et al. (1999) Identification of mutations in the c-mpl gene in congenital amegakaryocytic thrombocytopenia. Proc Natl Acad Sci USA 96: 3132–3136

    Article  PubMed  ADS  CAS  Google Scholar 

  31. Imai K, Morio T, Zhu Y et al. (2004) Clinical course of patients with WASP gene mutations. Blood 103: 456–464

    Article  PubMed  CAS  Google Scholar 

  32. Iolascon A, Perrotta S, Amendola G et al. (1999) Familial dominant thrombocytopenia: clinical, biologic, and molecular studies. Pediatr Res 46: 548–552

    Article  PubMed  CAS  Google Scholar 

  33. Jacobsen P, Hauge M, Henningsen K et al. (1973) An (11;21) translocation in four generations with chromosome 11 abnormalities in the offspring. A clinical, cytogenetical, and gene marker study. Hum Hered 23: 568–585

    Article  PubMed  CAS  Google Scholar 

  34. King S, Germeshausen M, Strauss G et al. (2005) Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Br J Haematol 131: 636–644

    Article  PubMed  Google Scholar 

  35. Klein C, Nguyen D, Liu CH et al. (2003) Gene therapy for Wiskott-Aldrich syndrome: rescue of T-cell signaling and amelioration of colitis upon transplantation of retrovirally transduced hematopoietic stem cells in mice. Blood 101: 2159–2166

    Article  PubMed  CAS  Google Scholar 

  36. Knight SW, Heiss NS, Vulliamy TJ et al. (1999) Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal-Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1. Br J Haematol 107: 335–339

    Article  PubMed  CAS  Google Scholar 

  37. Lacombe M, D AG (1963) Etudes sur une thrombopathie familiale. Nouv Rev Fr Hematol 270: 611–614

    PubMed  CAS  Google Scholar 

  38. Laffan M, Brown SA, Collins PW et al. (2004) The diagnosis of von Willebrand disease: a guideline from the UK Haemophilia Centre Doctors’ Organization. Haemophilia 10: 199–217

    Article  PubMed  CAS  Google Scholar 

  39. Letestu R, Vitrat N, Masse A et al. (2000) Existence of differentiation blockage at the stage of a megakaryocyte precursor in the thrombocytopenia and absent radii (TAR) syndrome. Blood 95: 1633–1641

    PubMed  CAS  Google Scholar 

  40. Litzman J, Jones A, Hann I et al. (1996) Intravenous immunoglobulin, splenectomy, and antibiotic prophylaxis in Wiskott-Aldrich syndrome. Arch Dis Child 75: 436–439

    Article  PubMed  CAS  Google Scholar 

  41. Lopez JA, Andrews RK, Afshar-Kharghan V et al. (1998) Bernard-Soulier syndrome. Blood 91: 4397–4418

    PubMed  CAS  Google Scholar 

  42. Mehaffey MG, Newton AL, Gandhi MJ et al. (2001) X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood 98: 2681–2688

    Article  PubMed  CAS  Google Scholar 

  43. Miller JL, Cunningham D, Lyle VA et al. (1991) Mutation in the gene encoding the alpha chain of platelet glycoprotein Ib in platelet-type von Willebrand disease. Proc Natl Acad Sci USA 88: 4761–4765

    Article  PubMed  ADS  CAS  Google Scholar 

  44. Milton JG, Frojmovic MM, Tang SS et al. (1984) Spontaneous platelet aggregation in a hereditary giant platelet syndrome (MPS). Am J Pathol 114: 336–345

    PubMed  CAS  Google Scholar 

  45. Minelli A, Maserati E, Rossi G et al. (2004) Familial platelet disorder with propensity to acute myelogenous leukemia: genetic heterogeneity and progression to leukemia via acquisition of clonal chromosome anomalies. Genes Chromosomes Cancer 40: 165–171

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  46. Nichols KE, Crispino JD, Poncz M et al. (2000) Familial dyserythropoietic anaemia and thrombocytotopenia dua to an in inherited mutation in GATA1. Nat Genet 24: 266–270

    Article  PubMed  CAS  Google Scholar 

  47. Noris P, Pecci A, Di Bari F et al. (2004) Application of a diagnostic algorithm for inherited thrombocytopenias to 46 consecutive patients. Haematologica 89: 1219–1225

    PubMed  CAS  Google Scholar 

  48. Ochs HD (2002) The Wiskott-Aldrich syndrome. Isr Med Assoc J 4: 379–384

    PubMed  CAS  Google Scholar 

  49. Okita JR, Frojmovic MM, Kristopeit S et al. (1989) Montreal platelet syndrome: a defect in calcium-activated neutral proteinase (calpain). Blood 74: 715–721

    PubMed  CAS  Google Scholar 

  50. Pecci A, Canobbio I, Balduini A et al. (2005) Pathogenetic mechanisms of hematological abnormalities of patients with MYH9 mutations. Hum Mol Genet 14: 3169–3178

    Article  PubMed  CAS  Google Scholar 

  51. Raccuglia G (1971) Gray platelet syndrome. A variety of qualitative platelet disorder. Am J Med 51: 818–828

    Article  PubMed  CAS  Google Scholar 

  52. Raslova H, Komura E, Le Couedic JP et al. (2004) FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest 114: 77–84

    Article  PubMed  CAS  Google Scholar 

  53. Sabri S, Foudi A, Boukour S et al. (2006) Deficiency in the Wiskott Aldrich protein induces pre-mature proplatelet formation and platelet production in the bone marrow com-partment. Blood (in press)

  54. Savoia A, Balduini CL, Savino M et al. (2001) Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard-Soulier syndrome. Blood 97: 1330–1335

    Article  PubMed  CAS  Google Scholar 

  55. Savoia A, Del Vecchio M, Totaro A et al. (1999) An autosomal dominant thrombocytopenia gene maps to chromosomal region 10p. Am J Hum Genet 65: 1401–1405

    Article  PubMed  CAS  Google Scholar 

  56. Seri M, Cusano R, Gangarossa S et al. (2000) Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium. Nat Genet 26: 103–105

    Article  PubMed  CAS  Google Scholar 

  57. Seri M, Pecci A, Di Bari F et al. (2003) MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore) 82: 203–215

    Google Scholar 

  58. Small KM, Potter SS (1993) Homeotic transformations and limb defects in Hox A11 mutant mice. Genes Dev 7: 2318–2328

    Article  PubMed  CAS  Google Scholar 

  59. Song WJ, Sullivan MG, Legare RD et al. (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23: 166–175

    Article  PubMed  CAS  Google Scholar 

  60. Stormorken H, Hellum B, Egeland T et al. (1991) X-linked thrombocytopenia and thrombocytopathia: attenuated Wiskott-Aldrich syndrome. Functional and morphological studies of platelets and lymphocytes. Thromb Haemost 65: 300–305

    PubMed  CAS  Google Scholar 

  61. Strippoli P, Savoia A, Iolascon A et al. (1998) Mutational screening of thrombopoietin receptor gene (c-mpl) in patients with congenital thrombocytopenia and absent radii (TAR). Br J Haematol 103: 311–314

    Article  PubMed  CAS  Google Scholar 

  62. Thompson AA, Nguyen LT (2000) Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet 26: 397–398

    Article  PubMed  CAS  Google Scholar 

  63. Thompson AA, Woodruff K, Feig SA et al. (2001) Congenital thrombocytopenia and radio-ulnar synostosis: a new familial syndrome. Br J Haematol 113: 866–870

    Article  PubMed  CAS  Google Scholar 

  64. Van Geet C, Devriendt K, Eyskens B et al. (1998) Velocardiofacial syndrome patients with a heterozygous chromosome 22q11 deletion have giant platelets. Pediatr Res 44: 607–611

    Article  PubMed  Google Scholar 

  65. Villa A, Notarangelo L, Macchi P et al. (1995) X-linked thrombocytopenia and Wiskott-Aldrich syndrome are allelic diseases with mutations in the WASP gene. Nat Genet 9: 414–417

    Article  PubMed  CAS  Google Scholar 

  66. White JG (1979) Ultrastructural studies of the gray platelet syndrome. Am J Pathol 95: 445–462

    PubMed  CAS  Google Scholar 

  67. Yu C, Niakan KK, Matsushita M et al. (2002) X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 100: 2040–2045

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ballmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballmaier, M., Balduini, C., Welte, K. et al. Erblich bedingte Thrombozytopenien. Monatsschr Kinderheilkd 154, 510–521 (2006). https://doi.org/10.1007/s00112-006-1346-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-006-1346-z

Schlüsselwörter

Keywords

Navigation