Skip to main content

Advertisement

Log in

Deregulation of the endogenous C/EBPβ LIP isoform predisposes to tumorigenesis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Two long and one truncated isoforms (termed LAP*, LAP, and LIP, respectively) of the transcription factor CCAAT enhancer binding protein beta (C/EBPβ) are expressed from a single intronless Cebpb gene by alternative translation initiation. Isoform expression is sensitive to mammalian target of rapamycin (mTOR)-mediated activation of the translation initiation machinery and relayed through an upstream open reading frame (uORF) on the C/EBPβ mRNA. The truncated C/EBPβ LIP, initiated by high mTOR activity, has been implied in neoplasia, but it was never shown whether endogenous C/EBPβ LIP may function as an oncogene. In this study, we examined spontaneous tumor formation in C/EBPβ knockin mice that constitutively express only the C/EBPβ LIP isoform from its own locus. Our data show that deregulated C/EBPβ LIP predisposes to oncogenesis in many tissues. Gene expression profiling suggests that C/EBPβ LIP supports a pro-tumorigenic microenvironment, resistance to apoptosis, and alteration of cytokine/chemokine expression. The results imply that enhanced translation reinitiation of C/EBPβ LIP promotes tumorigenesis. Accordingly, pharmacological restriction of mTOR function might be a therapeutic option in tumorigenesis that involves enhanced expression of the truncated C/EBPβ LIP isoform.

Key message

  • Elevated C/EBPβ LIP promotes cancer in mice.

  • C/EBPβ LIP is upregulated in B-NHL.

  • Deregulated C/EBPβ LIP alters apoptosis and cytokine/chemokine networks.

  • Deregulated C/EBPβ LIP may support a pro-tumorigenic microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wethmar K, Smink JJ, Leutz A (2010) Upstream open reading frames: molecular switches in (patho)physiology. BioEssays News Rev Mol Cell Dev Biol 32:885–893

    Article  CAS  Google Scholar 

  2. Zahnow CA (2009) CCAAT/enhancer-binding protein beta: its role in breast cancer and associations with receptor tyrosine kinases. Expert Rev Mol Med 11:e12

    Article  PubMed Central  PubMed  Google Scholar 

  3. Calkhoven CF, Muller C, Leutz A (2000) Translational control of C/EBPalpha and C/EBPbeta isoform expression. Genes Dev 14:1920–1932

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Nardella C, Carracedo A, Salmena L, Pandolfi PP (2010) Faithfull modeling of PTEN loss driven diseases in the mouse. Curr Top Microbiol Immunol 347:135–168

    CAS  PubMed  Google Scholar 

  5. Ossipow V, Descombes P, Schibler U (1993) CCAAT/enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials. Proc Natl Acad Sci U S A 90:8219–8223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Li Y, Bevilacqua E, Chiribau CB, Majumder M, Wang C, Croniger CM, Snider MD, Johnson PF, Hatzoglou M (2008) Differential control of the CCAAT/enhancer-binding protein beta (C/EBPbeta) products liver-enriched transcriptional activating protein (LAP) and liver-enriched transcriptional inhibitory protein (LIP) and the regulation of gene expression during the response to endoplasmic reticulum stress. J Biol Chem 283:22443–22456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Timchenko NA, Wang GL, Timchenko LT (2005) RNA CUG-binding protein 1 increases translation of 20-kDa isoform of CCAAT/enhancer-binding protein beta by interacting with the alpha and beta subunits of eukaryotic initiation translation factor 2. J Biol Chem 280:20549–20557

    Article  CAS  PubMed  Google Scholar 

  9. Smink JJ, Begay V, Schoenmaker T, Sterneck E, de Vries TJ, Leutz A (2009) Transcription factor C/EBPbeta isoform ratio regulates osteoclastogenesis through MafB. Embo J 28:1769–1781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wethmar K, Begay V, Smink JJ, Zaragoza K, Wiesenthal V, Dorken B, Calkhoven CF, Leutz A (2010) C/EBPbetaDeltauORF mice–a genetic model for uORF-mediated translational control in mammals. Genes Dev 24:15–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dearth LR, Hutt J, Sattler A, Gigliotti A, DeWille J (2001) Expression and function of CCAAT/enhancer binding proteinbeta (C/EBPbeta) LAP and LIP isoforms in mouse mammary gland, tumors and cultured mammary epithelial cells. J Cell Biochem 82:357–370

    Article  CAS  PubMed  Google Scholar 

  12. Milde-Langosch K, Loning T, Bamberger AM (2003) Expression of the CCAAT/enhancer-binding proteins C/EBPalpha, C/EBPbeta and C/EBPdelta in breast cancer: correlations with clinicopathologic parameters and cell-cycle regulatory proteins. Breast Cancer Res Treat 79:175–185

    Article  CAS  PubMed  Google Scholar 

  13. Zahnow CA, Younes P, Laucirica R, Rosen JM (1997) Overexpression of C/EBPbeta-LIP, a naturally occurring, dominant-negative transcription factor, in human breast cancer. J Natl Cancer Inst 89:1887–1891

    Article  CAS  PubMed  Google Scholar 

  14. Jundt F, Raetzel N, Muller C, Calkhoven CF, Kley K, Mathas S, Lietz A, Leutz A, Dorken B (2005) A rapamycin derivative (everolimus) controls proliferation through down-regulation of truncated CCAAT enhancer binding protein {beta} and NF-{kappa}B activity in Hodgkin and anaplastic large cell lymphomas. Blood 106:1801–1807

    Article  CAS  PubMed  Google Scholar 

  15. Piva R, Pellegrino E, Mattioli M, Agnelli L, Lombardi L, Boccalatte F, Costa G, Ruggeri BA, Cheng M, Chiarle R et al (2006) Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes. J Clin Invest 116:3171–3182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Quintanilla-Martinez L, Pittaluga S, Miething C, Klier M, Rudelius M, Davies-Hill T, Anastasov N, Martinez A, Vivero A, Duyster J et al (2006) NPM-ALK-dependent expression of the transcription factor CCAAT/enhancer binding protein beta in ALK-positive anaplastic large cell lymphoma. Blood 108:2029–2036

    Article  CAS  PubMed  Google Scholar 

  17. Arnett B, Soisson P, Ducatman BS, Zhang P (2003) Expression of CAAT enhancer binding protein beta (C/EBP beta) in cervix and endometrium. Mol Cancer 2:21

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sundfeldt K, Ivarsson K, Carlsson M, Enerback S, Janson PO, Brannstrom M, Hedin L (1999) The expression of CCAAT/enhancer binding protein (C/EBP) in the human ovary in vivo: specific increase in C/EBPbeta during epithelial tumour progression. Br J Cancer 79:1240–1248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Rask K, Thorn M, Ponten F, Kraaz W, Sundfeldt K, Hedin L, Enerback S (2000) Increased expression of the transcription factors CCAAT-enhancer binding protein-beta (C/EBBeta) and C/EBzeta (CHOP) correlate with invasiveness of human colorectal cancer. Int J Cancer 86:337–343

    Article  CAS  PubMed  Google Scholar 

  20. Oh HS, Smart RC (1998) Expression of CCAAT/enhancer binding proteins (C/EBP) is associated with squamous differentiation in epidermis and isolated primary keratinocytes and is altered in skin neoplasms. J Invest Dermatol 110:939–945

    Article  CAS  PubMed  Google Scholar 

  21. Gomis RR, Alarcon C, Nadal C, Van Poznak C, Massague J (2006) C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10:203–214

    Article  CAS  PubMed  Google Scholar 

  22. Sterneck E, Tessarollo L, Johnson PF (1997) An essential role for C/EBPbeta in female reproduction. Genes Dev 11:2153–2162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

  24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li H, Baldwin BR, Zahnow CA (2011) LIP expression is regulated by IGF-1R signaling and participates in suppression of anoikis. Mol Cancer 10:100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zahnow CA, Cardiff RD, Laucirica R, Medina D, Rosen JM (2001) A role for CCAAT/enhancer binding protein beta-liver-enriched inhibitory protein in mammary epithelial cell proliferation. Cancer Res 61:261–269

    CAS  PubMed  Google Scholar 

  27. Ward JM (2006) Lymphomas and leukemias in mice. Exp Toxicol Pathol 57:377–381

    Article  PubMed  Google Scholar 

  28. Harvey M, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A, Donehower LA (1993) Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice. Nat Genet 5:225–229

    Article  CAS  PubMed  Google Scholar 

  29. Bonzheim I, Irmler M, Klier-Richter M, Steinhilber J, Anastasov N, Schafer S, Adam P, Beckers J, Raffeld M, Fend F et al (2013) Identification of C/EBPbeta target genes in ALK+ anaplastic large cell lymphoma (ALCL) by gene expression profiling and chromatin immunoprecipitation. PLoS One 8:e64544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Uematsu S, Kaisho T, Tanaka T, Matsumoto M, Yamakami M, Omori H, Yamamoto M, Yoshimori T, Akira S (2007) The C/EBP beta isoform 34-kDa LAP is responsible for NF-IL-6-mediated gene induction in activated macrophages, but is not essential for intracellular bacteria killing. J Immunol 179:5378–5386

    Article  CAS  PubMed  Google Scholar 

  31. Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E et al (2010) Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 32:790–802

    Article  CAS  PubMed  Google Scholar 

  32. Nerlov C (2007) The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol 17:318–324

    Article  CAS  PubMed  Google Scholar 

  33. Nerlov C (2010) Transcriptional and translational control of C/EBPs: the case for “deep” genetics to understand physiological function. BioEssays News Rev Mol Cell Dev Biol 32:680–686

    Article  CAS  Google Scholar 

  34. Ramji DP, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365:561–575

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Feldman AL, Arber DA, Pittaluga S, Martinez A, Burke JS, Raffeld M, Camos M, Warnke R, Jaffe ES (2008) Clonally related follicular lymphomas and histiocytic/dendritic cell sarcomas: evidence for transdifferentiation of the follicular lymphoma clone. Blood 111:5433–5439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Newman JR, Keating AE (2003) Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300:2097–2101

    Article  CAS  PubMed  Google Scholar 

  37. Vinson C, Myakishev M, Acharya A, Mir AA, Moll JR, Bonovich M (2002) Classification of human B-ZIP proteins based on dimerization properties. Mol Cell Biol 22:6321–6335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Chen W, Ma T, Shen XN, Xia XF, Xu GD, Bai XL, Liang TB (2012) Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway. Cancer Res 72:1363–1372

    Article  CAS  PubMed  Google Scholar 

  39. Menon S, Yecies JL, Zhang HH, Howell JJ, Nicholatos J, Harputlugil E, Bronson RT, Kwiatkowski DJ, Manning BD (2012) Chronic activation of mTOR complex 1 is sufficient to cause hepatocellular carcinoma in mice. Sci Signal 5:ra24

    Article  PubMed Central  PubMed  Google Scholar 

  40. Xu ZZ, Xia ZG, Wang AH, Wang WF, Liu ZY, Chen LY, Li JM (2013) Activation of the PI3K/AKT/mTOR pathway in diffuse large B cell lymphoma: clinical significance and inhibitory effect of rituximab. Ann Hematol 92:1351–1358

    Article  CAS  PubMed  Google Scholar 

  41. Lee D, Wada K, Taniguchi Y, Al-Shareef H, Masuda T, Usami Y, Aikawa T, Okura M, Kamisaki Y, Kogo M (2014) Expression of fatty acid binding protein 4 is involved in the cell growth of oral squamous cell carcinoma. Oncol Rep 31:1116–1120

    CAS  PubMed  Google Scholar 

  42. Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C, Pandolfi PP (2004) The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10:484–486

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank E. Sterneck for providing the Cebpb ko mouse strain; HP Rahn for help with flow cytometry; the radiology department of the Helios Klinikum for help with X-ray radiation; and C. Becker, J. Bergemann, A.V. Giese, P. Heinrich-Gossen, S. Jaksch, R. Leu, S. Spieckermann, and R. Zarmstorff for technical assistance. We are grateful to F. Rosenbauer and T. Müller for valuable discussions. This work was supported by the Deutsche Krebsgesellschaft (grant no. LEFF200708 to A.L.) and by the German Research Council (grant no. TRR-54 to A.L. and U.L.).

Conflict of interest

The authors declare no conflict of interest related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Leutz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 31.1 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bégay, V., Smink, J.J., Loddenkemper, C. et al. Deregulation of the endogenous C/EBPβ LIP isoform predisposes to tumorigenesis. J Mol Med 93, 39–49 (2015). https://doi.org/10.1007/s00109-014-1215-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1215-5

Keywords

Navigation