Skip to main content
Log in

A novel gene regulator, pyrrole–imidazole polyamide targeting ABCA1 gene increases cholesterol efflux from macrophages and plasma HDL concentration

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Pyrrole–imidazole (PI) polyamides are nuclease-resistant novel compounds that inhibit transcription factors by binding to the minor groove of DNA. A PI polyamide that targets mouse ABCA1 and increases ABCA1 gene expression was designed and evaluated as an agent to increase plasma HDL concentration. A PI polyamide was designed to bind the activator protein-2 binding site of the mouse ABCA1 promoter. The effect of this PI polyamide on ABCA1 expression was evaluated by real-time RT-PCR and Western blotting using RAW264 cells. In vivo effects of this polyamide on ABCA1 gene expression and plasma HDL level were examined in C57B6 mice. One milligram per kilogram of body weight of PI polyamide was injected via the tail veins every 2 days for 1 week, and plasma lipid profiles were evaluated. PI polyamide showed a specific binding to the target DNA in gel mobility shift assay. Treatment of RAW264 cells with 1.0 μM PI polyamide significantly increased ABCA1 mRNA expression. PI polyamide also significantly increased apolipoprotein AI-mediated HDL biogenesis in RAW264 cells. Cellular cholesterol efflux mediated by apolipoprotein AI was significantly increased by the PI polyamide treatment. PI polyamide significantly increased expression of ABCA1 mRNA in the liver of C57B6 mice. Plasma HDL concentration was increased by PI polyamide administration. All of the HDL sub-fractions showed a tendency to increase after PI polyamide administration. The designed PI polyamide that targeted ABCA1 successfully increased ABCA1 expression and HDL biogenesis. This novel gene-regulating agent is promising as a useful compound to increase plasma HDL concentration.

Key messages

  • A novel pyrrole–imidazole (PI) polyamide binds to ABCA1.

  • PI polyamide interfered with binding of AP-2ɑ protein to the ABCA1 gene promoter.

  • PI polyamide inhibited the AP-2ɑ-mediated reduction of ABCA1 gene and protein expression.

  • PI polyamide increased ABCA1 protein and apolipoprotein AI mediated HDL biogenesis.

  • PI polyamide is a new gene regulator for the prevention of atherosclerotic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Assmann G, Schulte H (1988) The Prospective Cardiovascular Munster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am Heart J 116:1713–1724

    Article  PubMed  CAS  Google Scholar 

  2. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 62:707–714

    Article  PubMed  CAS  Google Scholar 

  3. Sandhu S, Wiebe N, Fried LF et al (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285:2486–2497

    Article  Google Scholar 

  4. Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R, Dallongeville J, De Backer G, Ebrahim S, Gjelsvik B et al (2007) European guidelines on cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J 28:2375–2414

    Article  PubMed  Google Scholar 

  5. Teramoto T, Sasaki J, Ueshima H, Egusa G, Kinoshita M, Shimamoto K, Daida H, Biro S, Hirobe K, Funahashi T et al (2007) Executive summary of Japan Atherosclerosis Society (JAS) guideline for diagnosis and prevention of atherosclerotic cardiovascular diseases for Japanese. J Atheroscler Thromb 14:45–50

    Article  PubMed  CAS  Google Scholar 

  6. Rader DJ (2007) Mechanisms of disease: HDL metabolism as a target for novel therapies. Nat Clin Pract Cardiovasc Med 4:102–109

    Article  PubMed  CAS  Google Scholar 

  7. Tall AR (2008) Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med 263:256–273

    Article  PubMed  CAS  Google Scholar 

  8. Yokoyama S (2005) Assembly of high density lipoprotein by the ABCA1/apolipoprotein pathway. Curr Opin Lipidol 16:269–279

    Article  PubMed  CAS  Google Scholar 

  9. Joyce CW, Amar MJ, Lambert G, Vaisman BL, Paigen B, Najib-Fruchart J, Hoyt RF Jr, Neufeld ED, Remaley AT, Fredrickson DS et al (2002) The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice. Proc Natl Acad Sci U S A 99:407–412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Singaraja RR, Fievet C, Castro G, James ER, Hennuyer N, Clee SM, Bissada N, Choy JC, Fruchart JC, McManus BM et al (2002) Increased ABCA1 activity protects against atherosclerosis. J Clin Invest 110:35–42

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Costet P, Luo Y, Wang N, Tall AR (2000) Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 275:28240–28245

    PubMed  CAS  Google Scholar 

  12. Schwartz K, Lawn RM, Wade DP (2000) ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. Biochem Biophys Res Commun 274:794–802

    Article  PubMed  CAS  Google Scholar 

  13. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A 97:12097–12102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Chinetti G, Lestavel S, Bocher V, Remaley AT, Neve B, Torra IP, Teissier E, Minnich A, Jaye M, Duverger N et al (2001) PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7:53–58

    Article  PubMed  CAS  Google Scholar 

  15. Ogata M, Tsujita M, Hossain MA, Akita N, Gonzalez FJ, Staels B, Suzuki S, Fukutomi T, Kimura G, Yokoyama S (2009) On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis 205:413–419

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Iwamoto N, Abe-Dohmae S, Ayaori M, Tanaka N, Kusuhara M, Ohsuzu F, Yokoyama S (2007) ATP-binding cassette transporter A1 gene transcription is downregulated by activator protein 2alpha. Doxazosin inhibits activator protein 2alpha and increases high-density lipoprotein biogenesis independent of alpha1-adrenoceptor blockade. Circ Res 101:156–165

    Article  PubMed  CAS  Google Scholar 

  17. Iwamoto N, Abe-Dohmae S, Lu R, Yokoyama S (2008) Involvement of protein kinase D in phosphorylation and increase of DNA binding of activator protein 2 alpha to downregulate ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol 28:2282–2287

    Article  PubMed  CAS  Google Scholar 

  18. Bremer RE, Szewczyk JW, Baird EE, Dervan PB (2000) Recognition of the DNA minor groove by pyrrole–imidazole polyamides: comparison of desmethyl- and N-methylpyrrole. Bioorg Med Chem 8:1947–1955

    Article  PubMed  CAS  Google Scholar 

  19. Dervan PB, Edelson BS (2003) Recognition of the DNA minor groove by pyrrole–imidazole polyamides. Curr Opin Struct Biol 13:284–299

    Article  PubMed  CAS  Google Scholar 

  20. White S, Baird EE, Dervan PB (1997) On the pairing rules for recognition in the minor groove of DNA by pyrrole–imidazole polyamides. Chem Biol 4:569–578

    Article  PubMed  CAS  Google Scholar 

  21. Chiang SY, Burli RW, Benz CC, Gawron L, Scott GK, Dervan PB, Beerman TA (2000) Targeting the ets binding site of the HER2/neu promoter with pyrrole–imidazole polyamides. J Biol Chem 275:24246–24254

    Article  PubMed  CAS  Google Scholar 

  22. Gottesfeld JM, Belitsky JM, Melander C, Dervan PB, Luger K (2002) Blocking transcription through a nucleosome with synthetic DNA ligands. J Mol Biol 321:249–263

    Article  PubMed  CAS  Google Scholar 

  23. Nguyen-Hackley DH, Ramm E, Taylor CM, Joung JK, Dervan PB, Pabo CO (2004) Allosteric inhibition of zinc-finger binding in the major groove of DNA by minor-groove binding ligands. Biochemistry 43:3880–3890

    Article  PubMed  CAS  Google Scholar 

  24. Wurtz NR, Turner JM, Baird EE, Dervan PB (2001) Fmoc solid phase synthesis of polyamides containing pyrrole and imidazole amino acids. Org Lett 3:1201–1203

    Article  PubMed  CAS  Google Scholar 

  25. Bando T, Sugiyama H (2006) Synthesis and biological properties of sequence-specific DNA-alkylating pyrrole–imidazole polyamides. Acc Chem Res 39:935–944

    Article  PubMed  CAS  Google Scholar 

  26. Tahira Y, Fukuda N, Endo M, Suzuki R, Ikeda Y, Takagi H, Matsumoto K, Kanmatsuse K (2002) Transforming growth factor-beta expression in cardiovascular organs in stroke-prone spontaneously hypertensive rats with the development of hypertension. Hypertens Res 25:911–918

    Article  PubMed  CAS  Google Scholar 

  27. Arakawa R, Yokoyama S (2002) Helical apolipoproteins stabilize ATP-binding cassette transporter A1 by protecting it from thiol protease-mediated degradation. J Biol Chem 277:22426–22429

    Article  PubMed  CAS  Google Scholar 

  28. Yokoyama S, Tajima S, Yamamoto A (1982) The process of dissolving apolipoprotein A-I in an aqueous buffer. J Biochem 91:1267–1272

    PubMed  CAS  Google Scholar 

  29. Abe-Dohmae S, Suzuki S, Wada Y, Aburatani H, Vance DE, Yokoyama S (2000) Characterization of apolipoprotein-mediated HDL generation induced by cAMP in a murine macrophage cell line. Biochemistry 39:11092–11099

    Article  PubMed  CAS  Google Scholar 

  30. Usui S, Hara Y, Hosaki S, Okazaki M (2002) A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J Lipid Res 43:805–814

    PubMed  CAS  Google Scholar 

  31. Matsuda H, Fukuda N, Ueno T, Katakawa M, Wang X, Watanabe T, Matsui S, Aoyama T, Saito K, Bando T et al (2011) Transcriptional inhibition of progressive renal disease by gene silencing pyrrole–imidazole polyamide targeting of the transforming growth factor-beta1 promoter. Kidney Int 79:46–56

    Article  PubMed  CAS  Google Scholar 

  32. Matsuda H, Fukuda N, Ueno T, Tahira Y, Ayame H, Zhang W, Bando T, Sugiyama H, Saito S, Matsumoto K et al (2006) Development of gene silencing pyrrole–imidazole polyamide targeting the TGF-beta1 promoter for treatment of progressive renal diseases. J Am Soc Nephrol 17:422–432

    Article  PubMed  CAS  Google Scholar 

  33. Ueno T, Fukuda N, Tsunemi A, Yao EH, Matsuda H, Tahira K, Matsumoto T, Matsumoto K, Matsumoto Y, Nagase H et al (2009) A novel gene silencer, pyrrole–imidazole polyamide targeting human lectin-like oxidized low-density lipoprotein receptor-1 gene improves endothelial cell function. J Hypertens 27:508–516

    Article  PubMed  CAS  Google Scholar 

  34. Santamarina-Fojo S, Peterson K, Knapper C, Qiu Y, Freeman L, Cheng JF, Osorio J, Remaley A, Yang XP, Haudenschild C et al (2000) Complete genomic sequence of the human ABCA1 gene: analysis of the human and mouse ATP-binding cassette A promoter. Proc Natl Acad Sci U S A 97:7987–7992

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Meyer P, Nigam A, Marcil M, Tardif JC (2009) The therapeutic potential of high-density lipoprotein mimetic agents in coronary artery disease. Curr Atheroscler Rep 11:329–333

    Article  PubMed  CAS  Google Scholar 

  36. Davidson MH (2010) Update on CETP inhibition. J Clin Lipidol 4: 394–398. DOI:10.1016/j.jacl.2010.08.003

    Google Scholar 

  37. Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, Drobnik W, Barlage S, Buchler C, Porsch-Ozcurumez M et al (1999) The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 22:347–351

    Article  PubMed  CAS  Google Scholar 

  38. Nishimaki-Mogami T, Tamehiro N, Sato Y, Okuhira K, Sai K, Kagechika H, Shudo K, Abe-Dohmae S, Yokoyama S, Ohno Y et al (2008) The RXR agonists PA024 and HX630 have different abilities to activate LXR/RXR and to induce ABCA1 expression in macrophage cell lines. Biochem Pharmacol 76:1006–1013

    Article  PubMed  CAS  Google Scholar 

  39. Zanotti I, Poti F, Pedrelli M, Favari E, Moleri E, Franceschini G, Calabresi L, Bernini F (2008) The LXR agonist T0901317 promotes the reverse cholesterol transport from macrophages by increasing plasma efflux potential. J Lipid Res 49:954–960

    Article  PubMed  CAS  Google Scholar 

  40. Gottesfeld JM, Turner JM, Dervan PB (2000) Chemical approaches to control gene expression. Gene Expr 9:77–91

    PubMed  CAS  Google Scholar 

  41. Oram JF, Lawn RM, Garvin MR, Wade DP (2000) ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J Biol Chem 275:34508–34511

    Article  PubMed  CAS  Google Scholar 

  42. Wang N, Silver DL, Costet P, Tall AR (2000) Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem 275:33053–33058

    Article  PubMed  CAS  Google Scholar 

  43. Chen W, Sun Y, Welch C, Gorelik A, Leventhal AR, Tabas I, Tall AR (2001) Preferential ATP-binding cassette transporter A1-mediated cholesterol efflux from late endosomes/lysosomes. J Biol Chem 276:43564–43569

    Article  PubMed  CAS  Google Scholar 

  44. Neufeld EB, Remaley AT, Demosky SJ, Stonik JA, Cooney AM, Comly M, Dwyer NK, Zhang M, Blanchette-Mackie J, Santamarina-Fojo S et al (2001) Cellular localization and trafficking of the human ABCA1 transporter. J Biol Chem 276:27584–27590

    Article  PubMed  CAS  Google Scholar 

  45. Takahashi Y, Smith JD (1999) Cholesterol efflux to apolipoprotein AI involves endocytosis and resecretion in a calcium-dependent pathway. Proc Natl Acad Sci U S A 96:11358–11363

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Basso F, Freeman L, Knapper CL, Remaley A, Stonik J, Neufeld EB, Tansey T, Amar MJ, Fruchart-Najib J, Duverger N et al (2003) Role of the hepatic ABCA1 transporter in modulating intrahepatic cholesterol and plasma HDL cholesterol concentrations. J Lipid Res 44:296–302

    Article  PubMed  CAS  Google Scholar 

  47. Vaisman BL, Lambert G, Amar M, Joyce C, Ito T, Shamburek RD, Cain WJ, Fruchart-Najib J, Neufeld ED, Remaley AT et al (2001) ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excretion in transgenic mice. J Clin Invest 108:303–309

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Wellington CL, Brunham LR, Zhou S, Singaraja RR, Visscher H, Gelfer A, Ross C, James E, Liu G, Huber MT et al (2003) Alterations of plasma lipids in mice via adenoviral-mediated hepatic overexpression of human ABCA1. J Lipid Res 44:1470–1480

    Article  PubMed  CAS  Google Scholar 

  49. Timmins JM, Lee JY, Boudyguina E, Kluckman KD, Brunham LR, Mulya A, Gebre AK, Coutinho JM, Colvin PL, Smith TL et al (2005) Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest 115:1333–1342

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by a grant from the “Strategic Research Base Development” Program for Private Universities subsidized by MEXT (2011).

Conflict of interest

There is no conflict of interest to disclose for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Ueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsunemi, A., Ueno, T., Fukuda, N. et al. A novel gene regulator, pyrrole–imidazole polyamide targeting ABCA1 gene increases cholesterol efflux from macrophages and plasma HDL concentration. J Mol Med 92, 509–521 (2014). https://doi.org/10.1007/s00109-013-1118-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1118-x

Keywords

Navigation