Skip to main content

Advertisement

Log in

Second Cancer Risk after simultaneous integrated boost radiation therapy of right sided breast cancer with and without flattening filter

Sekundärmalignom-Risiko nach simultan integrierter Boost-Bestrahlung des rechtsseitigen Mamma-Karzinoms mit und ohne Ausgleichskörper

Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to investigate if the flattening filter free mode (FFF) of a linear accelerator reduces the excess absolute risk (EAR) for second cancer as compared to the flat beam mode (FF) in simultaneous integrated boost (SIB) radiation therapy of right-sided breast cancer.

Patients and methods

Six plans were generated treating the whole breast to 50.4 Gy and a SIB volume to 63 Gy on CT data of 10 patients: intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and a tangential arc VMAT (tVMAT), each with flattening filter and without. The EAR was calculated for the contralateral breast and the lungs from dose–volume histograms (DVH) based on the linear-exponential, the plateau, and the full mechanistic dose–response model. Peripheral low-dose measurements were performed to compare the EAR in more distant regions as the thyroids and the uterus.

Results

FFF reduces the EAR significantly in the contralateral and peripheral organs for tVMAT and in the peripheral organs for VMAT. No reduction was found for IMRT. The lowest EAR for the contralateral breast and lung was achieved with tVMAT FFF, reducing the EAR by 25 % and 29 % as compared to tVMAT FF, and by 44 % to 58 % as compared to VMAT and IMRT in both irradiation modes. tVMAT FFF showed also the lowest peripheral dose corresponding to the lowest EAR in the thyroids and the uterus.

Conclusion

The use of FFF mode allows reducing the EAR significantly when tVMAT is used as the treatment technique. When second cancer risk is a major concern, tVMAT FFF is considered the preferred treatment option in SIB irradiation of right-sided breast cancer.

Zusammenfassung

Zielsetzung

Ziel der Studie war es zu untersuchen, ob der ausgleichskörperfreie Modus (FFF) bei der simultan integrierten Boost-(SIB-)Bestrahlung des rechtsseitigen Mammakarzinoms eine Reduktion des strahleninduzierten Sekundärmalignomrisikos („excess absolute risk“, EAR) im Vergleich zur Bestrahlung mit Ausgleichskörper (FF) erlaubt.

Patienten und Methoden

Auf CT-Daten von 10 Patienten wurden jeweils 6 Pläne zur Behandlung der gesamten Brust mit einer Verschreibungsdosis von 50,4 Gy und eines SIB mit 63 Gy generiert: eine intensitätsmodulierte Strahlentherapie (IMRT), eine volumenmodulierte Rotationstherapie (VMAT) und eine tangentiale VMAT (tVMAT), jeweils mit und ohne Ausgleichskörper. Das EAR wurde für die kontralaterale Brust und die Lungen anhand des linear-exponentiellen Modells, des Plateau- und des mechanistischen Modells für die Dosisreaktion aus den Dosis-Volumen-Histogrammen (DVH) der Organe berechnet. Zusätzlich wurden periphere Dosismessungen durchgeführt, um das EAR in Schilddrüse und Uterus zu vergleichen.

Ergebnisse

FFF reduziert das EAR in den kontralateralen und peripheren Risikoorganen bei tVMAT und in den peripheren Organen bei VMAT. Bei IMRT konnte keine Reduktion beobachtet werden. Das signifikant niedrigste EAR für die kontralaterale Brust und Lunge wurde mit tVMAT FFF erreicht, mit einer Reduktion um 25 % bzw. 29 % im Vergleich zu tVMAT FF und um 44–58 % im Vergleich zu VMAT und IMRT in beiden Modi. Das niedrigste EAR in Schilddrüse und Uterus wurde ebenfalls mit tVMAT FFF erreicht.

Schlussfolgerung

Der ausgleichskörperfreie Modus eines Linearbeschleunigers erlaubt eine signifikante Reduktion des EAR, wenn zugleich tVMAT als Bestrahlungstechnik gewählt wird. Daher wird tVMAT FFF als bevorzugte Bestrahlungsoption betrachtet, wenn das Sekundärmalignomrisiko von großer Bedeutung ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3D-CRT:

three-dimensional conformal radiation therapy

DVH:

dose–volume histogram

EAR:

excess absolute risk

FF:

flattening filter

FFF:

flattening filter free

IMRT:

intensity-modulated radiation therapy

lin:

linear model

lin_exp:

linear–exponential model

mech:

full mechanistic model

OAR:

organ at risk

OED:

organ equivalent dose

plateau:

plateau model

PTV:

planning target volume

SIB:

simultaneous integrated boost

VMAT:

volumetric modulated arc therapy

tVMAT:

tangential volumetric modulated arc therapy

References

  1. Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, Godwin J, Gray R, Hicks C, James S, MacKinnon E, McGale P, McHugh T, Peto R, Taylor C, Wang Y (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366(9503):2087–2106. doi:10.1016/s0140-6736(05)67887-7

    Article  CAS  PubMed  Google Scholar 

  2. Stovall M, Smith SA, Langholz BM, Boice JD Jr., Shore RE, Andersson M, Buchholz TA, Capanu M, Bernstein L, Lynch CF, Malone KE, Anton-Culver H, Haile RW, Rosenstein BS, Reiner AS, Thomas DC, Bernstein JL (2008) Dose to the contralateral breast from radiotherapy and risk of second primary breast cancer in the WECARE study. Int J Radiat Oncol Biol Phys 72(4):1021–1030. doi:10.1016/j.ijrobp.2008.02.040

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schneider U, Zwahlen D, Ross D, Kaser-Hotz B (2005) Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose. Int J Radiat Oncol Biol Phys 61(5):1510–1515. doi:10.1016/j.ijrobp.2004.12.040

    Article  PubMed  Google Scholar 

  4. Schneider U, Walsh L (2008) Cancer risk estimates from the combined Japanese A‑bomb and Hodgkin cohorts for doses relevant to radiotherapy. Radiat Environ Biophys 47(2):253–263. doi:10.1007/s00411-007-0151-y

    Article  PubMed  Google Scholar 

  5. Schneider U (2009) Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys 36(4):1138–1143. doi:10.1118/1.3089792

    Article  PubMed  Google Scholar 

  6. Schneider U, Sumila M, Robotka J (2011) Site-specific dose-response relationships for cancer induction from the combined Japanese A‑bomb and Hodgkin cohorts for doses relevant to radiotherapy. Theor Biol Med Model 8:27–28. doi:10.1186/1742-4682-8-27

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schneider U, Sumila M, Robotka J, Gruber G, Mack A, Besserer J (2011) Dose-response relationship for breast cancer induction at radiotherapy dose. Radiat Oncol 6:67. doi:10.1186/1748-717X-6-67

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abo-Madyan Y, Aziz MH, Aly MM, Schneider F, Sperk E, Clausen S, Giordano FA, Herskind C, Steil V, Wenz F, Glatting G (2014) Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiother Oncol 110(3):471–476. doi:10.1016/j.radonc.2013.12.002

    Article  PubMed  Google Scholar 

  9. Georg D, Knoos T, McClean B (2011) Current status and future perspective of flattening filter free photon beams. Med Phys 38(3):1280–1293

    Article  PubMed  Google Scholar 

  10. Kragl G, Baier F, Lutz S, Albrich D, Dalaryd M, Kroupa B, Wiezorek T, Knoos T, Georg D (2011) Flattening filter free beams in SBRT and IMRT: dosimetric assessment of peripheral doses. Z Med Phys 21(2):91–101. doi:10.1016/j.zemedi.2010.07.003

    Article  PubMed  Google Scholar 

  11. Dellas K, Vonthein R, Zimmer J, Dinges S, Boicev AD, Andreas P, Fischer D, Winkler C, Ziegler A, Dunst J, Grp AS (2014) Hypofractionation with simultaneous integrated boost for early breast cancer results of the German multicenter phase II trial (ARO-2010-01). Strahlenther Onkol 190(7):646–653. doi:10.1007/s00066-014-0658-5

    Article  PubMed  Google Scholar 

  12. Sedlmayer F, Sautter-Bihl ML, Budach W, Dunst J, Fastner G, Feyer P, Fietkau R, Haase W, Harms W, Souchon R, Wenz F, Sauer R, German BCEP (2013) DEGRO practical guidelines: radiotherapy of breast cancer I Radiotherapy following breast conserving therapy for invasive breast cancer. Strahlenther Onkol 189(10):825–833. doi:10.1007/s00066-013-0437-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56(1):83–88

    Article  PubMed  Google Scholar 

  14. Pasler M, Lutterbach J, Bjornsgard M, Reichmann U, Bartelt S, Georg D (2015) VMAT techniques for lymph node-positive left sided breast cancer. Z Med Phys 25(2):104–111. doi:10.1016/j.zemedi.2014.03.008

    Article  PubMed  Google Scholar 

  15. Dobler B, Groeger C, Treutwein M, Alvarez-Moret J, Goetzfried T, Weidner K, Haertl P, Koelbl O (2011) Commissioning of volumetric modulated arc therapy (VMAT) in a dual-vendor environment. Radiother Oncol 99(1):86–89. doi:10.1016/j.radonc.2011.01.024

    Article  PubMed  Google Scholar 

  16. Dobler B, Khemissi A, Obermeier T, Hautmann MG, Katsilieri Z, Kolbl O (2016) Re-irradiating spinal column metastases using IMRT and VMAT with and without flattening filter – a treatment planning study. Radiat Oncol 11(1):33–30. doi:10.1186/s13014-016-0603-0

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dobler B, Streck N, Klein E, Loeschel R, Haertl P, Koelbl O (2010) Hybrid plan verification for intensity-modulated radiation therapy (IMRT) using the 2D ionization chamber array I’mRT MatriXX – a feasibility study. Phys Med Biol 55(2):N39–N55. doi:10.1088/0031-9155/55/2/N02

    Article  PubMed  Google Scholar 

  18. Low DA, Harms WB, Mutic S, Purdy JA (1998) A technique for the quantitative evaluation of dose distributions. Med Phys 25(5):656–661

    Article  CAS  PubMed  Google Scholar 

  19. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K (2007) Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 168(1):1–64. doi:10.1667/RR0763.1

    Article  CAS  PubMed  Google Scholar 

  20. Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D, Molineu A, Palta JR, Ramsey CR, Salter BJ, Shi J, Xia P, Yue NJ, Xiao Y (2009) IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 36(11):5359–5373

    Article  PubMed  Google Scholar 

  21. Ezzell GA, Galvin JM, Low D, Palta JR, Rosen I, Sharpe MB, Xia P, Xiao Y, Xing L, Yu CX (2003) Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med Phys 30(8):2089–2115

    Article  PubMed  Google Scholar 

  22. Johansen S, Cozzi L, Olsen DR (2009) A planning comparison of dose patterns in organs at risk and predicted risk for radiation induced malignancy in the contralateral breast following radiation therapy of primary breast using conventional, IMRT and volumetric modulated arc treatment techniques. Acta Oncol 48(4):495–503. doi:10.1080/02841860802657227

    Article  CAS  PubMed  Google Scholar 

  23. Weber DC, Johanson S, Peguret N, Cozzi L, Olsen DR (2011) Predicted risk of radiation-induced cancers after involved field and involved node radiotherapy with or without intensity modulation for early-stage hodgkin lymphoma in female patients. Int J Radiat Oncol Biol Phys 81(2):490–497. doi:10.1016/j.ijrobp.2010.05.035

    Article  PubMed  Google Scholar 

  24. Lee B, Lee S, Sung J, Yoon M (2014) Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT. J Radiol Prot 34(2):325–331. doi:10.1088/0952-4746/34/2/325

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Bavarian State Ministry of the Environment and Consumer Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Dobler.

Ethics declarations

Conflict of interest

The department has research cooperation with Elekta GmbH Hamburg. B. Dobler, J. Maier, B. Knott, M. Maerz, R. Loeschel, and O. Koebl declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobler, B., Maier, J., Knott, B. et al. Second Cancer Risk after simultaneous integrated boost radiation therapy of right sided breast cancer with and without flattening filter. Strahlenther Onkol 192, 687–695 (2016). https://doi.org/10.1007/s00066-016-1025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-1025-5

Keywords

Schlüsselwörter

Navigation