Skip to main content
Log in

Amphibian myiasis. Blowfly larvae (Lucilia bufonivora, Diptera: Calliphoridae) coping with the poisonous skin secretion of the common toad (Bufo bufo)

  • Research Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

The blowfly Lucilia bufonivora shows high host specificity for toads despite the host’s toxic skin secretion, which consists mainly of bufadienolides. These toxins are effective blockers of the Na+, K+-ATPase, an enzyme that is essential for many physiological processes in animals. Whereas common toad (Bufo bufo) toxins were identified in the larvae of the fly, few toxins were found in the pupae and empty puparia as trace amounts, while adult flies were entirely free of these toxic compounds. Similar results were obtained when larvae of generalist necrophagous blowflies (L. sericata, Calliphora vicina) fed on toad carcasses. Analysis of the Na+, K+-ATPase gene revealed no amino acid substitution at positions known to mediate resistance to bufadienolides in other systems. Alternative mechanisms of resistance such as efficient excretion of the compounds may enable the flies to use this poisonous food source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol 194:28–45

    Article  CAS  PubMed  Google Scholar 

  • Blackith RE, Blackith RM (1990) Insect infestation of small corpses. J Nat Hist 24:699–709

    Article  Google Scholar 

  • Boehme P, Spahn P, Amendt J, Zehner R (2013) Differential gene expression during metamorphosis: a promising approach for age estimation of forensically important Calliphora vicina pupae (Diptera: Calliphoridae). Int J Legal Med 127:243–249

    Article  PubMed  Google Scholar 

  • Croyle ML, Woo AL, Lingrel JB (1997) Extensive random mutagenesis analysis of the Na+/K+-ATPase α subunit identifies known and previously unidentified amino acid residues that alter ouabain binding. Eur J Biochem 248:488–495

    Article  CAS  PubMed  Google Scholar 

  • Dalla S, Swarts HG, Koenderink JB, Dobler S (2013) Amino acid substitutions of Na, K-ATPase conferring decreased sensitivity to cardenolides in insects compared to mammals. Insect Biochem Mol Biol 43:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Deulofeu V, Ruveda EA (1971) The constituents of toad venoms. In: Bücherl W, Buckley EE (eds) Venomous animals and their venoms, vol 2. Academic Press, New York, pp 475–495

    Chapter  Google Scholar 

  • Dobler S, Petschenka G, Pankoke HC (2011) Coping with toxic plant compounds—the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72:1593–1604

    Article  CAS  PubMed  Google Scholar 

  • Dobler S, Dalla S, Wagschal V, Agrawal AA (2012) Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na, K-ATPase. Proc Natl Acad Sci 109:13040–13045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dvela M, Rosen H, Feldmann T, Nesher M, Lichtstein D (2007) Diverse biological responses to different cardiotonic steroids. Pathophysiology 14:150–166

    Article  Google Scholar 

  • Eaton BR, Moenting AE, Paszkowski CA, Shpeley D (2008) Myiasis by Lucilia silvarum (Calliphoridae) in amphibian species in boreal Alberta, Canada. J Parasitology 94:949–952

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Fremdt H, Szpila K, Huijbregts J, Lindström A, Zehner R, Amendt J (2012) Lucilia silvarum Meigen, 1826 (Diptera: Calliphoridae)—a new species of interest for forensic entomology in Europe. Forensic Sci Intern 222:335–339

    Article  CAS  Google Scholar 

  • Glaw F, Morinière J, Glaw K, Doczkal D (2014) Myiasis bei der Erdkröte (Bufo bufo) verursacht durch die Schmeißfliege Lucilia ampullacea. Z Feldherpetologie 21:83–95

    Google Scholar 

  • Groth U, Reissmüller H (1973) Beziehungen synanthroper Fliegen zu Kleintierleichen, Teil I: Methodik, Vor- und Hauptversuche. Angew Parasitol 14:83–100

    CAS  PubMed  Google Scholar 

  • Hinaidy HK, Frey H (1990) Neue Myiasis-Fälle bei Tieren in Österreich. Mitt Öster Ges Tropenmed Parasitol 12:111–120

    Google Scholar 

  • Holzinger F, Wink M (1996) Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): role of an amino acid substitution in the ouabain binding site of Na+, K+-ATPase. J Chem Ecol 22:1921–1937

    Article  CAS  PubMed  Google Scholar 

  • Horisberger JD (2004) Recent insights into the structure and mechanism of the sodium pump. Physiology 19:377–387

    Article  CAS  PubMed  Google Scholar 

  • Krenn L, Kopp B (1998) Bufadienolides from animal and plant sources. Phytochemistry 48:1–29

    Article  CAS  PubMed  Google Scholar 

  • Labeyrie E, Dobler S (2004) Molecular adaptation of Chrysochus leaf beetles to toxic compounds in their food plants. Mol Biol Evol 21:218–221

    Article  CAS  PubMed  Google Scholar 

  • Lazarus LH, Attila M (1993) The toad, ugly and venomous, wears yet a precious jewel in his skin. Prog Neurobiol 41:473–507

    Article  CAS  PubMed  Google Scholar 

  • Lebovitz RM, Takeyasu K, Fambrough DM (1989) Molecular characterization and expression of the (Na+ + K+)-ATPase alpha-subunit in Drosophila melanogaster. EMBO J 8:193–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lingrel JB, Orlowski J, Shull MM, Price EM (1990) Molecular genetics of Na, K-ATPase. Prog Nucleic Acid Res Mol Biol 38:37–89

    Article  CAS  PubMed  Google Scholar 

  • Malcolm SB (1991) Cardenolide-mediated interactions between plants and herbivores. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, vol 1. Academic Press, San Diego, pp 251–295

    Google Scholar 

  • Mebs D, Zehner R, Schneider M (2000) Molecular studies on the ouabain binding site of the Na+, K+-ATPase in milkweed butterflies. Chemoecology 10:201–203

    Article  CAS  Google Scholar 

  • Meyer K, Linde H (1971) Collection of toad venom and chemistry of the toad venom steroids. In: Bücherl W, Buckley EE (eds) Venomous animals and their venoms, vol 2. Academic Press, New York, pp 521–556

    Chapter  Google Scholar 

  • Petschenka G, Offe JK, Dobler S (2012) Physiological screening for target site insensitivity and localization of Na+/K+-ATPase in cardenolide-adapted Lepidoptera. J Insect Physiol 58:607–612

    Article  CAS  PubMed  Google Scholar 

  • Petschenka G, Fandrich S, Sander N, Wagschal V, Boppré M, Dobler S (2013a) Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the Na+/K+-ATPase of milkweed butterflies (Lepidoptera: Danaini). Evolution 67:2753–2761

    Article  CAS  PubMed  Google Scholar 

  • Petschenka G, Pick C, Wagschal V, Dobler S (2013b) Functional evidence for physiological mechanisms to circumvent neurotoxicity of cardenolides in an adapted and a non-adapted hawk–moth species. Proc R Soc B: Biol Sci 280:20123089. doi:10.1098/rspb.2012.3089

    Article  Google Scholar 

  • Qiu LY, Swarts HG, Tonk EC, Willems PH, Koenderink JB, De Pont JJ (2006) Conversion of the low affinity ouabain-binding site of non-gastric H, K-ATPase into a high affinity binding site by substitution of only five amino acids. J Biol Chem 281:13533–13539

    Article  CAS  PubMed  Google Scholar 

  • Rognes K (1991) Blowflies (Diptera, Calliphoridae) of fennoscandia and Denmark. Fauna Entomol Scand, 24th edn. EJ Brill/Scandinavian Sci Press Ltd, Leiden

    Google Scholar 

  • Schatzmann HJ (1953) Herzglykoside als Hemmstoffe für den aktiven Kalium und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta 11:346–354

    CAS  PubMed  Google Scholar 

  • Scudder GGE, Meredith J (1982) The permeability of the midgut of three insects to cardiac glycosides. J Insect Physiol 28:689–694

    Article  CAS  Google Scholar 

  • Shimada K, Ohishi K, Fukunaga H, Ro JS, Nambara T (1985) Structure-activity relationship of bufotoxins and related compounds for the inhibition of Na+, K+ -adenosine triphosphatase. J Pharmacobiodyn 8:1054–1059

    Article  CAS  PubMed  Google Scholar 

  • Stevens J, Wall R (1997) The evolution of ectoparasitism in the genus Lucilia (Diptera: Calliphoridae). Proc Roy Soc London Ser B 263:1335–1341

    Article  Google Scholar 

  • Steyn PS, van Heerden FR (1998) Bufadienolides of plant and animal origin. Nat Prod Rep 15:397–413

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torrie LS, Radford JC, Southall TD, Kean L, Dinsmore AJ, Davies SA, Dow JA (2004) Resolution of the insect ouabain paradox. Proc Natl Acad Sci 101:13689–13693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weddeling K, Kordges T (2008) Lucilia bufonivora-Befall (Myiasis) bei Amphibien in Nordrhein-Westfalen—Verbreitung, Wirtsarten, Ökologie und Phänologie. Z Feldherpetologie 15:183–202

    Google Scholar 

  • Yatime L, Laursen M, Morth JP, Esmann M, Nissen P, Fedosova NU (2011) Structural insights into the high affinity binding of cardiotonic steroids to the Na+, K+-ATPase. J Struct Biol 174:296–306

    Article  CAS  PubMed  Google Scholar 

  • Zhen Y, Aardema ML, Medina EM, Schumer M, Andolfatto P (2012) Parallel molecular evolution in an herbivore community. Science 337:1634–1637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zumpt F (1965) Myiasis in man and animals in the old world. Butterworth, London

    Google Scholar 

Download references

Acknowledgments

We are thankful to Vera Wagschal for her help in sequencing the Na+, K+-ATPase gene and to Dr. Sara DeLeon, Drexel University, Philadelphia, PA, for improving the English language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Mebs.

Additional information

Handling Editor: Michael Heethoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mebs, D., Petschenka, G., Pogoda, W. et al. Amphibian myiasis. Blowfly larvae (Lucilia bufonivora, Diptera: Calliphoridae) coping with the poisonous skin secretion of the common toad (Bufo bufo). Chemoecology 24, 159–164 (2014). https://doi.org/10.1007/s00049-014-0157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-014-0157-2

Keywords

Navigation