Skip to main content

Advertisement

Log in

In vitro cytotoxicity, α-glucosidase inhibition, antioxidant, and free radical scavenging activities of Illicium griffithii Hook. f. & Thoms fruits

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Illicium griffithii is a medicinal tree species of the temperate broad-leaved forests of North East India; its fruits are used in the pharmaceutical and spice industries. The fruits are used medicinally to treat cough, sinusitis, toothache, regurgitating, dyspepsia, abdominal pain, and food poisoning and are considered carminative, stomachic, and glactagogic. The present study was aimed to evaluate the cytotoxicity, α-glucosidase inhibitory potential, antioxidant, and free radical scavenging activities of hexane, ethyl acetate, and methanol extracts of I. griffithii fruits. Ethyl acetate extract (EAE) exhibited 78.7 % toxicity at the dose of 500 μg/ml with IC50 value of 300 μg/ml against A549 human adenocarcinoma lung cancer cell line, 50 % α-glucosidase inhibition at 810.32 ± 1.28 μg/ml concentration, and potent scavenging activity at 1,000 μg/ml on DPPH (91.12 % ± 2.08), CUPRAC (2.384 ± 0.03), reducing power (0.847 ± 0.02), lipid peroxidation (55.52 % ± 1.56), hydroxyl (75.83 % ± 1.47), and DMPD (76.12 % ± 1.35). It additionally showed maximum activity at 300 μg/ml on total antioxidant activity (0.290 ± 0.04 GAE mg/g) and FRAP (2.150 ± 0.23 mM Fe2+/g). The results demonstrated that EAE possessed marked activity in all the tested biological parameters. On further fractionation, EAE gave an active fraction F3. Two phenolic compounds were isolated and identified (3,4-dihydroxybenzoic acid and 3,4,5-trihydroxybenzoic acid) from this fraction for the first time. I. griffithii showed promising cytotoxic and antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed N, Babaei-Jadidi R, Howell S, Thornalley PJ, Beisswenger PJ (2005) Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care 28:2465–2471

    Article  CAS  PubMed  Google Scholar 

  • Amit SY, Deepak B (2010) Inhibition of iron induced lipid peroxidation and antioxidant activity of Indian spices and Acacia in vitro. Plant Foods Hum Nutr 65:18–24

    Article  Google Scholar 

  • Andrade-Cetto A, Becerra-Jimenez J, Cardenas-Vazquez R (2008) Alpha-glucosidase inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. J Ethnopharmacol 116:27–32

    Article  PubMed  Google Scholar 

  • Apak R, Guclu K, Ozyurek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52:7970–7981

    Article  CAS  PubMed  Google Scholar 

  • Babu BH, Shylesh BS, Padikkala J (2001) Antioxidant and hepatoprotective effect of Alanthusicici focus. Fitoterapia 72:272–277

    Article  CAS  PubMed  Google Scholar 

  • Balachandran C, Duraipandiyan V, Balakrishna K, Lakshmi Sundaram R, Vijayakumar A, Ignacimuthu S, Naif AA (2013) Synthesis and medicinal properties of plant-derived vilangin. Environ Chem Lett 11(3):303–308

    Article  CAS  Google Scholar 

  • Baron AD (1998) Postprandial hyperglycaemia and alpha-glucosidase inhibitors. Diabetes Res Clin Pract 40:S51–S55

    Article  CAS  PubMed  Google Scholar 

  • Benzie IEF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Bischoff H, Puls W, Krause HP, Schutt H, Thomas G (1985) Pharmacological properties of the novel glucosidase inhibitors BAY m 1099 (miglitol) and BAY o 1248. Diabetes Res Clin Pract 1:53–62

    Google Scholar 

  • Brand-Williams W, Cuvelier M, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technol 28:25–30

    Article  CAS  Google Scholar 

  • Collier AC, Pritsos CA (2003) The mitochondrial uncoupler dicumarol disrupts the MTT assay. Biochem Pharmacol 66:281–287

    Article  CAS  PubMed  Google Scholar 

  • Dahlqvist A (1964) Method for assay of intestinal disaccharidases. Anal Biochem 7:18–25

    Article  CAS  PubMed  Google Scholar 

  • Debora Villa˜no M, Soledad Fern′andez-Pach′on Ana M, Troncoso M, Carmen Garc′ıa-Parrilla (2005) Comparison of antioxidant activity of wine phenolic compounds and metabolites in vitro. Anal Chim Acta 538: 391–398

  • Dharmendra KM, Nivedita N, Thomas PAD (2011) Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J Clin Biochem Nutr 48(1):85–90

    Google Scholar 

  • Elizabeth K, Rao MNA (1990) Oxygen radical scavenging activity of curcumin. Int J Pharm 58:237–240

    Article  Google Scholar 

  • Fogliano V, Verde V, Randazzo G, Rittieni A (1999) Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J Agric Food Chem 47:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Forest Resources Development Division (FRDD) (2008) Department of Forests Ministry of Agriculture Royal Government of Bhutan. Guidelines for resource assessment and management of Illicium griffithii. http://www.moa.gov.bt/moa/downloads/downloadFiles/MoADownload.pdf. Accessed 18 Feb 2013

  • Formica JV, Regelson W (1995) Review of the biology of quercetin and related biflavonoids. Food Chem Toxicol 33:1061–1080

    Article  CAS  PubMed  Google Scholar 

  • Gibney MJ, Lanham-New SA, Cassidy A, Vorster HH (2009) Introduction to human nutrition, 2nd edn. Wiley-Blackwell, Hoboken, pp 290–291

    Google Scholar 

  • Gulcin I (2008) Measurement of antioxidant ability of melatonin and serotonin by the DMPD and CUPRAC methods as trolox equivalent. J Enzym Inhib Med Chem 23:871–876

    Article  CAS  Google Scholar 

  • Hanato T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull 36:2090–2097

    Article  Google Scholar 

  • Heacock PM, Hertzler SR, Williams JA, Wolf BW (2005) Effects of a medical food containing an herbal α-glucosidase inhibitor on postprandial glycemia and insulinemia in healthy adults. J Am Diet Assoc 105:65–71

    Article  PubMed  Google Scholar 

  • Hochestein P, Atallah AS (1988) The nature of oxidant and antioxidant systems in the inhibition of mutation and cancer. Mutat Res 202:363–375

    Article  Google Scholar 

  • Izabela B, Iwona G, Andrzej G, Zbigniew S (2013) Antioxidant activity of selected phenols estimated by ABTS and FRAP methods. Postepy Hig Med Dosw 67:958–963

    Article  Google Scholar 

  • Janero DR (1990) Malondialdehyde and thiobarbituric acid reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540

    Article  CAS  PubMed  Google Scholar 

  • Keawpradub N, Muangwong S, Salaeh S (2001) Free radical scavenging activity of star anise (Illicium verum). Songklanakarin J Sci Technol 23:527–536

    Google Scholar 

  • Khan RA, Khan MR, Sahreen S (2012) Assessment of flavonoids contents and in vitro antioxidant activity of Launaea procumbens. Chem Cent J 6:43

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kirankumar H, Namrata P, Yuvaraj M, Ashok G, Mahesh B (2013) Bioactivity-guided isolation of cytotoxic constituents from three medicinal plants. Pharm Biol Early Online 1–6

  • Kviecinski MR, Felipe KB, Schoenfelder T (2008) Study of the antitumor potential of Bidens pilosa (Asteraceae) used in Brazilian folk medicine. J Ethnopharmacol 117(1):69–75

    Article  PubMed  Google Scholar 

  • Maurya DK, Nandakumar N, Devasagayam TPA (2011) Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J Clin Biochem Nutr 48(1):85–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meir S, Kanner J, Akiri B, Hadas SP (1995) Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J Agric Food Chem 43:1813–1817

    Article  CAS  Google Scholar 

  • Meshram G, Patil B, Yadav S, Shinde D (2011) Isolation and characterization of gallic acid from Terminallia bellerica and its effect on carbohydrate regulatory system in vitro. IJRAP 2(2):559–562

    CAS  Google Scholar 

  • Moon JK, Shibamoto T (2009) Antioxidant assays for plant and food components. J Agric Food Chem 57(5):1655–1666

    Article  CAS  PubMed  Google Scholar 

  • Mossman T (1983) Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  • Nimal Christhudas IVS, Praveen Kumar P, Sunil C, Vajravijayan S, Lakshmi Sundaram R, Jenifer Siril S, Agastian P (2013) In vitro studies on α-glucosidase inhibition, antioxidant and free radical scavenging activities of Hedyotis biflora L. Food Chem 138:1689–1695

    Article  CAS  PubMed  Google Scholar 

  • Nitin KU, Yogendra Kumar MS, Asheesh G (2010) Antioxidant, cytoprotective and antibacterial effects of sea buckthorn (Hippophae rhamnoides L.) leaves. Food Chem Toxicol 48:3443–3448

    Article  Google Scholar 

  • Syafni N, Putra DP, Arbain D (2012) 3,4-dihydroxybenzoic acid and 3,4-dihydroxybenzaldehyde from the fern Trichomanes chinense L.; isolation, antimicrobial and antioxidant properties. Indonesian J Chem 12(3):273–278

    CAS  Google Scholar 

  • Oyaizu M (1986) Studies on product of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Roa KS, Nargesh KK, Ravi KBVV (2012) A comparative study of polyphenolic composition and in vitro antioxidant activity of Illicium verum extracted by microwave and soxhlet extraction techniques. Indian J pharm Educ 46(3):228–234

    Google Scholar 

  • Rocks N, Bekaert S, Coia I et al (2012) Curcumin-cyclodextrin complexes potentiate gemcitabine effects in an orthotopic mouse model of lung cancer. Br J Cancer 107:1083–1092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saha D, Sundriyal RC (2010) Stand structure, phenology and fruit yield of Illicium griffithii in western Arunachal Pradesh, North east India. Indian J For 33(4):475–488

    Google Scholar 

  • Saikat S, Chakraborty R, Sridhar C, Reddy YSR, Biplab D (2010) Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. Int J Pharm Sci Rev Res 3:91–100

    Google Scholar 

  • Sinha GN (2008) Forest and forestry in Arunachal Pradesh. SRFI Inf Bull 27:43

    Google Scholar 

  • Slinkard J, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:49–55

    CAS  Google Scholar 

  • Sun HX, Peng XY (2008) Protective effect of triterpenoid fractions from the rhizomes of Astilbe chinensis on cyclophosphamide-induced toxicity in tumor-bearing mice. J Ethnopharmacol 119(2):312–317

    Article  CAS  PubMed  Google Scholar 

  • Swapnil BP, Varsha AG, Shreehari ST, Chaitanya RK, Akalpita UA (2011) Insulin secretagogue, alpha-glucosidase and antioxidant activity of some selected spices in streptozotocin-induced diabetic rats. Plant Foods Hum Nutr 66:85–90

    Article  Google Scholar 

  • Vijayakumar A, Duraipandiyan V, Jeyaraj B, Agastian P, Karunai Raj M, Ignacimuthu S (2012) Phytochemical analysis and in vitro antimicrobial activity of Illicium griffithii Hook. f. & Thoms extracts. Asian Pac J Trop Dis 2(3):190–199

    Article  CAS  Google Scholar 

  • Xican L, Xiaozhen W, Dongfeng C, Shuzhi C (2011) Antioxidant activity and mechanism of protocatechuic acid in vitro. Funct Foods Health Dis 7:232–244

    Google Scholar 

  • Yang Z, Wang Y, Wang Y, Zhang Y (2012) Bioassay-guided screening and isolation of α-glucosidase and tyrosinase inhibitors from leaves of Morus alba. Food Chem 131:617–625

    Article  CAS  Google Scholar 

  • Yen GC, Hsieh CL (1998) Antioxidant activity of extracts from Du-zhong (Eucommia ulmoides) towards various peroxidation models in vitro. J Agric Food Chem 46:3952–3957

    Article  CAS  Google Scholar 

  • Yihai W, Limin X, Chunhua W, Chao T, Xiangjiu H (2013) Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PLoS One 8(1):e71144

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Loyola Institute of Frontier Energy (LIFE). Special thanks to Dr. K. Balakrishna, Entomology Research Institute (ERI), Loyola College, Chennai, for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jeyaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayakumar, A., Jeyaraj, B., Karunai Raj, M. et al. In vitro cytotoxicity, α-glucosidase inhibition, antioxidant, and free radical scavenging activities of Illicium griffithii Hook. f. & Thoms fruits. Med Chem Res 23, 2769–2779 (2014). https://doi.org/10.1007/s00044-013-0868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0868-x

Keywords

Navigation