Journal of Fourier Analysis and Applications

, Volume 17, Issue 1, pp 96–114

Basic Fourier Series: Convergence on and Outside the q-Linear Grid

Authors

    • UTAD, Quinta de Prados, Edifício das Ciências Florestais, Departamento de MatemáticaCM-UTAD
Article

DOI: 10.1007/s00041-010-9161-2

Cite this article as:
Cardoso, J.L. J Fourier Anal Appl (2011) 17: 96. doi:10.1007/s00041-010-9161-2

Abstract

A q-type Hölder condition on a function f is given in order to establish (uniform) convergence of the corresponding basic Fourier series Sq[f] to the function itself, on the set of points of the q-linear grid. Furthermore, by adding other conditions, one guarantees the (uniform) convergence of Sq[f] to f on and “outside” the set points of the q-linear grid.

Keywords

q-trigonometric functionsq-Fourier seriesBasic Fourier expansionsUniform convergenceq-linear grid

Mathematics Subject Classification (2000)

42C1033D15
Download to read the full article text

Copyright information

© Springer Science+Business Media, LLC 2010