A.

S. Alexakis, Unique continuation for the vacuum Einstein equations, preprint (2008); arXiv:0902.1131

AIK.

S. Alexakis, A.D. Ionescu, S. Klainerman, Uniqueness of smooth stationary black holes in vacuum: small perturbations of the Kerr spaces, arXiv:0902.1173

B.

Biquard O.: Continuation unique à partir de l’infini conforme pour les métriques d’einstein. Math. Res. Lett.

**15**, 1091–1099 (2008)

MATHMathSciNetBu.

G.L. Bunting, Proof of the Uniqueness Conjecture for Black Holes, PhD Thesis, Univ. of New England, Armidale, NSW (1983).

C1.

Carter B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Letters

**26**, 331–333 (1971)

CrossRefC2.

B. Carter, Black hole equilibrium states, Black holes/Les astres occlus (École d’Été Phys. Théor., Les Houches, 1972), Gordon and Breach, New York (1973), 57–214.

C3.

B. Carter, Has the Black Hole Equilibrium Problem Been Solved?, in “The Eighth Marcel Grossmann Meeting, Part A, B (Jerusalem, 1997), World Sci. Publ., River Edge, NJ (1999). 136–155.

ChK.

D. Christodoulou, S. Klainerman, The Global Nonlinear Stability of the Minkowski Space, Princeton Math. Series 41, Princeton University Press (1993).

Chr1.

P.T. Chrusciel, “No Hair” theorems – folklore, conjecture, results, Diff. Geom. and Math. Phys. (J. Beem, K.L. Duggal, eds.) Cont. Math. 170, AMS, Providence, (1994), 23–49,

Chr2.

Chrusciel P.T.: On the rigidity of analytic black holes. Comm. Math. Phys.

**189**, 1–7 (1997)

MATHCrossRefMathSciNetChrC.

P.T. Chrusciel, J.L. Costa, On uniqueness of stationary vacuum black holes, arXiv:0806.0016

ChrW.

Chrusciel P.T., Wald R.M.: On the Topology of Stationary Black Holes. Class. Quant. Gr.

**10**, 2091–2101 (1993)

MATHCrossRefFRW.

Friedrich H., Rácz I., Wald R.: On the rigidity theorem for space-times with a stationary event horizon or a compact Cauchy horizon, Commun. Math. Phys.

**204**, 691–707 (1999)

MATHCrossRefHE.

S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge Univ. Press, 1973.

Hö.

L. Hörmander, The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 275, Springer-Verlag, Berlin (1985).

IK1.

Ionescu A.D., Klainerman S.: On the uniqueness of smooth, stationary black holes in vacuum. Invent. Math.

**175**, 35–102 (2009)

MATHCrossRefMathSciNetIK2.

Ionescu A.D., Klainerman S.: Uniqueness results for ill-posed characteristic problems in curved space-times. Commun. Math. Phys.

**285**, 873–900 (2009)

MATHCrossRefMathSciNetIsM.

Isenberg J., Moncrief V.: Symmetries of cosmological Cauchy horizons. Commun. Math. Phys.

**89**, 387–413 (1983)

MATHCrossRefMathSciNetIsr.

Israel W.: Event horizons in static vacuum space-times. Phys. Rev. Letters **164**, 1776–1779 (1967)

KN.

S. Klainerman, F. Nicolò, The Evolution Problem in General Relativity, Progress in Mathematical Physics 25, Birkhäuser Boston, Inc., Boston, MA, (2003).

M.

Mars M.: A space-time characterization of the Kerr metric. Classical Quantum Gravity

**16**, 2507–2523 (1999)

MATHCrossRefMathSciNetMa.

Mazur P.O.: Proof of uniqueness for the Kerr-Newman black hole solution. J. Phys. A: Math Gen.

**15**, 3173–3180 (1982)

MATHCrossRefMathSciNetRW.

Rácz I., Wald R.: Extensions of space-times with Killing horizons. Class. Quant. Gr. **9**, 2463–2656 (1992)

Re.

Rendall A.: Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations. Proc. R. Soc. London A

**427**, 221–239 (1990)

MATHCrossRefMathSciNetRo.

Robinson D.C.: Uniqueness of the Kerr black hole. Phys. Rev. Lett.

**34**, 905–906 (1975)

CrossRefS.

Simon W.: Characterization of the Kerr metric. Gen. Rel. Grav.

**16**, 465–476 (1984)

MATHCrossRefW.

G. Weinstein, The stationary axisymmetric two body problem in general relativity, Comm. Pure. Appl. Math. XLV(1990), 1183–203.