Geometric and Functional Analysis

, Volume 19, Issue 2, pp 356–372

A Hadwiger-Type Theorem for the Special Unitary Group


DOI: 10.1007/s00039-009-0008-4

Cite this article as:
Bernig, A. Geom. Funct. Anal. (2009) 19: 356. doi:10.1007/s00039-009-0008-4


The dimension of the space of SU(n) and translation-invariant continuous valuations on \({\mathbb {C}^n}\), n ≥ 2, is computed. For even n, this dimension equals (n2 + 3n + 10)/2; for odd n it equals (n2 + 3n + 6)/2. An explicit geometric basis of this space is constructed. The kinematic formulas for SU(n) are obtained as corollaries.

Keywords and phrases

Valuation kinematic formula integral geometry 

2000 Mathematics Subject Classification

53C65 52A22 

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Département de MathématiquesFribourgSwitzerland

Personalised recommendations