M. Alekhnovich. More on average case vs approximation complexity. In *FOCS ’03: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science*, page 298, Washington, DC, USA, 2003. IEEE Computer Society.

N. Alon, R. Panigrahy & S. Yekhanin. Deterministic approximation algorithms for the nearest codeword problem. In *APPROX ’09 / RANDOM ’09: Proceedings of the 12th International Workshop and 13th International Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques*, pages 339–351, Berlin, Heidelberg, 2009. Springer-Verlag.

Babai L., Shpilka A., Stefankovic D.: Locally testable cyclic codes. IEEE Transactions on Information Theory

**51**(8), 2849–2858 (2005)

MathSciNetCrossRefO. Barkol, Y. Ishai & E. Weinreb. On locally decodable codes, self-correctable codes, and t-private PIR. In *APPROX ’07/RANDOM ’07: Proceedings of the 10th International Workshop on Approximation and the 11th International Workshop on Randomization, and Combinatorial Optimization. Algorithms and Techniques*, pages 311–325, Berlin, Heidelberg, 2007. Springer-Verlag.

A. Beimel, Y. Ishai, E. Kushilevitz, & J. F. Raymond. Breaking the *o*(*n*
^{1/(2k – 1)}) barrier for information-theoretic private information retrieval. In *FOCS*, pages 261–270. IEEE Computer Society, 2002.

Blum M., Kannan S.: Designing programs that check their work. J. ACM

**42**(1), 269–291 (1995)

MATHCrossRefBorwein P., Moser W.O.J.: A survey of Sylvester’s problem and its generalizations. Journal Aequationes Mathematicae

**40**(1), 111–135 (1990)

MathSciNetMATHCrossRefZ. Dvir, P. Gopalan & S. Yekhanin. Matching vector codes. FOCS 2010 (to appear), 2010.

K. Efremenko. 3-query locally decodable codes of subexponential length. In *STOC*, pages 39–44. ACM, 2009.

Goldreich O., Karloff H.J., Schulman L.J., Trevisan L.: Lower bounds for linear locally decodable codes and private information retrieval.. Computational Complexity

**15**(3), 263–296 (2006)

MathSciNetMATHCrossRefP. Gopalan. A note on Efremenko’s locally decodable codes. *Electronic Colloquium on Computational Complexity (ECCC)*, (069), 2009.

Huffman W.C., Brualdi R. A. Handbook of Coding Theory. Elsevier Science Inc., New York, NY, USA, 1998.

MATHJ. Katz & L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes. In *STOC*, pages 80–86, 2000.

Kerenidis I., de Wolf R.: Exponential lower bound for 2-query locally decodable codes via a quantum argument. J. Comput. Syst. Sci.

**69**(3), 395–420 (2004)

MATHCrossRefSwastik Kopparty, Shubhangi Saraf & Sergey Yekhanin. High-rate codes with sublinear-time decoding. ECCC technical report TR10-148, 2010.

R. J. Lipton. Efficient checking of computations. In *STACS*, volume 415 of *Lecture Notes in Computer Science*, pages 207–215. Springer, 1990.

S. V. Lokam. Quadratic lower bounds on matrix rigidity. In *TAMC*, volume 3959 of *Lecture Notes in Computer Science*, pages 295–307. Springer, 2006.

Lokam S.V.: Complexity lower bounds using linear algebra. Foundations and Trends in Theoretical Computer Science

**4**(1–2), 1–155 (2009)

MathSciNetMATHF.J. MacWilliams & N.J.A. Sloane. *The theory of error correcting codes*. 1977.

Razborov A.A., Rudich S.: Natural proofs. J. Comput. Syst. Sci.

**55**(1), 24–35 (1997)

MathSciNetMATHCrossRefTrevisan L.: Some applications of coding theory in computational complexity. Quaderni di Matematica, 13:2004, 2004.

MathSciNetL. G. Valiant. Graph-theoretic arguments in low-level complexity. In *MFCS*, volume 53 of *Lecture Notes in Computer Science*, pages 162–176. Springer, 1977.

L. G. Valiant. Completeness classes in algebra. In *STOC ’79*: *Proceedings of the eleventh annual ACM symposium on Theory of computing*, pages 249–261, New York, NY, USA, 1979. ACM.

D. Woodruff. New lower bounds for general locally decodable codes. Electronic Colloquium on Computational Complexity (ECCC) TR07-006, 2007.

S. Yekhanin. Towards 3-query locally decodable codes of subexponential length. *J. ACM*, 55(1), 2008.