Skip to main content
Log in

Comparison of Two Solutions of Quadrature Oscillators With Linear Control of Frequency of Oscillation Employing Modern Commercially Available Devices

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes two circuits of frequency-controlled oscillators, whose structures are based only on simple commercially available active elements with minimum number of terminals, in particular, the differential voltage buffer, controllable voltage amplifier and electronically controllable current conveyor. Two methods for achieving linear control (tuning) of frequency of oscillations (FO) are discussed. The first method employs a simple structure. However, the generated signal level (amplitude) depends on the tuning process. This is a drawback of this method. The second method solves this drawback completely, and the generated signals have constant amplitudes during the tuning of FO. The expected behavior is confirmed by laboratory experiments utilizing commercially available high-speed active elements (current- and voltage-mode multipliers, video difference amplifier). Operational range was tested from frequencies of hundreds of kHz up to frequencies of tens of MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. AD830: High speed, video difference amplifier, analog devices [online] (2005), last modified 3/2003 [cit.27.4.2014].http://www.analog.com/static/imported-files/data_sheets/AD830.pdf

  2. AD835: 250 MHz, voltage output 4-quadrant, analog devices [online] (1994), last modified 12/2010 [cit. 22.4.2014]. http://www.analog.com/static/imported-files/data_sheets/AD835.pdf

  3. H. Alzaher, CMOS digitally programmable quadrature oscillators. Int. J. Circuit Theory Appl. 36(8), 953–966 (2008). doi:10.1002/cta.479

    Article  Google Scholar 

  4. D.R. Bhaskar, K.K. Abdalla, R. Senani, Electronically-controlled current-mode second order sinusoidal oscillators using MO-OTAs and grounded capacitors. Circuits Syst. 2(2), 65–73 (2011). doi:10.4236/cs.2011.22011

    Article  Google Scholar 

  5. D. Biolek, A. Lahiri, W. Jaikla, M. Siripruchyanun, J. Bajer, Realisation of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA. Microelectron. J. 42(10), 1116–1123 (2011). doi:10.1016/j.mejo.2011.07.004

    Article  Google Scholar 

  6. D. Biolek, R. Senani, V. Biolkova, Z. Kolka, Active elements for analog signal processing: classification, review, and new proposal. Radioengineering 17(4), 15–32 (2008)

    Google Scholar 

  7. V. Biolkova, J. Bajer, D. Biolek, Four-phase oscillators employing two active elements. Radioengineering 20(1), 334–339 (2011)

    Google Scholar 

  8. EL2082: Current-Mode Multiplier, Intersil (Elantec) [online] (1996), last modified 2003 [cit.28.7.2011]. http://www.intersil.com/data/fn/fn7152.pdf

  9. J. Galan, R.G. Carvalaj, A. Torralba, F. Munoz, J. Ramirez-Angulo, A low-power low-voltage OTA-C sinusoidal oscillator with large tuning range. IEEE Trans. Circuits Syst. I 52(2), 283–291 (2005). doi:10.1109/TCSI.2004.841599

    Article  Google Scholar 

  10. W. Jaikla, A. Lahiri, Resistor-less current-mode four-phase quadrature oscillator using CCCDTA and grounded capacitors. AEU Int. J. Electron. Commun. 66(3), 214–218 (2012). doi:10.1016/j.aeue.2011.07.001

    Article  Google Scholar 

  11. R. Keawon, W. Jaikla, A resistor-less current-mode quadrature sinusoidal oscillator employing single CCCDTA and grounded capacitors. Prz. Elektrotech. 87(8), 138–141 (2011)

    Google Scholar 

  12. F. Khateb, F. Kacar, N. Khatib, D. Kubanek, High-precision differential-input buffered and external transconductance amplifier for low-voltage low-power applications. Circuits Syst. Signal Process. 32(2), 453–476 (2013). doi:10.1007/s00034-012-9470-6

    Article  MathSciNet  Google Scholar 

  13. H. Kuntman, A. Ozpinar, On the realization of DO-OTA-C oscillators. Microelectron. J. 29(12), 991–997 (1998). doi:10.1016/S0026-2692(98)00063-9

    Article  Google Scholar 

  14. A. Lahiri, Current-mode variable frequency quadrature sinusoidal oscillator using two CCs and four passive components including grounded capacitors. Analog Integr. Circuits Signal Process. 71(2), 303–311 (2012). doi:10.1007/s10470-010-9571-8

    Article  Google Scholar 

  15. A. Lahiri, M. Gupta, Realizations of grounded negative capacitance using CFOAs. Circuits Syst. Signal Process. 30(1), 143–155 (2011). doi:10.1007/s00034-010-9215-3

    Article  MATH  Google Scholar 

  16. Y. Li, Electronically tunable current-mode biquadratic filter and four-phase quadrature oscillator. Microelectron. J. 45(3), 330–335 (2014). doi:10.1016/j.mejo.2013.12.005

    Article  Google Scholar 

  17. Y. Li, Electronically tunable current-mode quadrature oscillator using single MCDTA. Radioengineering 19(4), 667–671 (2010)

    Google Scholar 

  18. B. Linarez-Barranco, A. Rodriguez-Vazquez, E. Sanchez-Sinencio, L. Huertas, CMOS OTA-C High frequency sinusoidal oscillators. IEEE J. Solid State Circuits 26(2), 160–165 (1991). doi:10.1109/4.68133

    Article  Google Scholar 

  19. OPA2652: Dual 700 MHz, Voltage-Feedback Operational Amplifier, Texas Instruments [online]. (2006), last modified 5/2006 [cit.27.4.2014]. http://www.ti.com/lit/ds/symlink/opa2652.pdf

  20. N. Pandey, S. K. Paul, Single CDTA-based current mode all-pass filter and its applications. J. Electr. Comput. Eng. 1–5 (2011). doi:10.1155/2011/897631

  21. A. Rodriguez-Vazquez, B. Linarez-Barranco, L. Huertas, E. Sanchez-Sinencio, On the design of voltage-controlled sinusoidal oscillators using OTA’s. IEEE Trans. Circuits Syst. I 37(2), 198–211 (1990). doi:10.1109/31.45712

    Article  Google Scholar 

  22. Ch. Sakul, W. Jaikla, K. Dejhan, New resistorless current-mode quadrature oscillators using 2 CCCDTAs and grounded capacitors. Radioengineering 20(4), 890–897 (2011)

    Google Scholar 

  23. A.M. Soliman, Two integrator loop quadrature oscillators: A review. J. Adv. Res. 4(1), 1–11 (2013). doi:10.1016/j.jare.2012.03.001

    Article  Google Scholar 

  24. R. Sotner, A. Lahiri, A. Kartci, N. Herencsar, J. Jerabek, K. Vrba, Design of novel precise quadrature oscillators employing ECCIIs with electronic control. Adv. Electr. Comput. Eng. 13(2), 65–72 (2013). doi:10.4316/AECE.2013.02011

    Article  Google Scholar 

  25. R. Sotner, J. Jerabek, N. Herencsar, Voltage differencing buffered/ inverted amplifiers and their applications for signal generation. Radioengineering 22(2), 490–504 (2013)

    Google Scholar 

  26. R. Sotner, N. Herencsar, J. Jerabek, J. Koton, T. Dostal, K. Vrba, Electronically controlled oscillator with linear frequency adjusting for four-phase or differential quadrature output signal generation. Int. J. Circuit Theory Appl. 42(12), 1264–1289 (2014). doi:10.1002/cta.1919

    Article  Google Scholar 

  27. R. Sotner, N. Herencsar, J. Jerabek, R. Dvorak, A. Kartci, T. Dostal, K. Vrba, New double current controlled CFA (DCC-CFA) based voltage mode oscillator with independent electronic control of oscillation condition and frequency. J. Electr. Eng. 64(2), 65–75 (2013). doi:10.2478/jee-2013-0010

    Google Scholar 

  28. R. Sotner, Z. Hrubos, N. Herencsar, J. Jerabek, T. Dostal, K. Vrba, Precise Electronically adjustable oscillator suitable for quadrature signal generation employing active elements with current and voltage gain control. Circuits Syst. Signal Process. 33(1), 1–35 (2014). doi:10.1007/s00034-013-9623-2

    Article  Google Scholar 

  29. S. Summart, Ch. Thongsopa, W. Jaikla, CCCIIs-based sinusoidal quadrature oscillators with non-interactive control of condition and frequency. Indian J. Pure Appl. Phys. 52(4), 277–283 (2014)

    Google Scholar 

  30. S. Summart, S. Tongsopa, W. Jaikla, OTA based current-mode sinusoidal quadrature oscillator with non-interactive control. Prz. Elektrotech. 88(7a), 14–17 (2012)

    Google Scholar 

  31. Texas Instruments. OPA860 Wide-bandwidth, operational transconductance amplifier (OTA) and buffer (online), http://www.ti.com/lit/ds/symlink/opa860.pdf

  32. VCA810: High Gain Adjust Range, Wideband, variable gain amplifier, Texas Instruments [online] (2003), last modified 12/2010 [cit.28.7.2011]. http://focus.ti.com/lit/ds/sbos275f/sbos275f.pdf

Download references

Acknowledgments

Research described in this paper was financed by Czech Ministry of Education in frame of National Sustainability Program under Grant LO1401. For research, infrastructure of the SIX Center was used. Research described in the paper was supported by Czech Science Foundation project under No. 14-24186P. Grant No. FEKT-S-14-2281 also supported this research. The support of the Project CZ.1.07/2.3.00/20.0007 WICOMT, financed from the operational program Education for competitiveness, is gratefully acknowledged. The authors would like to thank the editor and the anonymous reviewers for their useful and constructive comments that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Sotner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotner, R., Jerabek, J., Langhammer, L. et al. Comparison of Two Solutions of Quadrature Oscillators With Linear Control of Frequency of Oscillation Employing Modern Commercially Available Devices. Circuits Syst Signal Process 34, 3449–3469 (2015). https://doi.org/10.1007/s00034-015-0015-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0015-7

Keywords

Navigation