Zeitschrift für angewandte Mathematik und Physik

, Volume 64, Issue 4, pp 1161–1176

Stability of non-isothermal phase transitions in a steady van der Waals flow


DOI: 10.1007/s00033-012-0275-z

Cite this article as:
Zhang, SY. Z. Angew. Math. Phys. (2013) 64: 1161. doi:10.1007/s00033-012-0275-z


This paper is concerned with the multidimensional stability of non-isothermal subsonic phase transitions in a steady supersonic flow of van der Waals type. For the sake of seeking physical admissible planar waves, the viscosity–capillarity criterion (Slemrod in Arch Ration Mech Anal 81(4):301–315, 1983) is chosen to be the admissible criterion. By showing the Lopatinski determinant being non-zero, we prove that subsonic phase transitions are uniformly stable in the sense of Majda (Mem Am Math Soc 41(275):1–95, 1983) under both one-dimensional and multidimensional perturbations.


Supersonic flows Non-isothermal subsonic phase transitions Euler equations Multidimensional stability 

Mathematics Subject Classification (2010)

35L65 35L67 

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Business Information Management SchoolShanghai Institute of Foreign TradeShanghaiPeople’s Republic of China

Personalised recommendations