Skip to main content
Log in

On global motions of a compressible barotropic and selfgravitating gas with density-dependent viscosities

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for the equations of selfgravitating motions of a barotropic gas with density-dependent viscosities μ(ρ), and λ(ρ) satisfying the Bresch–Desjardins condition, when the pressure P(ρ) is not necessarily a monotone function of the density. We prove that this problem admits a global weak solution provided that the adiabatic exponent γ associated with P(ρ) satisfies \({\gamma > \frac{4}{3}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bresch D., Desjardins B.: Some diffusive capillary models of Korteweg type. C. R. Acad. Sci. Paris, Section Mécanique 332, 881–886 (2004)

    Google Scholar 

  2. Bresch D., Desjardins B., Gérard-Varet D.: On compressible Navier-Stokes equations with density dependent viscosities in bounded domains. J. Math. Pures Appl. 87, 227–235 (2007)

    MATH  MathSciNet  Google Scholar 

  3. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Dynamics of Viscous Compressible Fluids. Cambridge University Press (1995)

  4. Ducomet B., Feireisl E., Petzeltová A., Straškraba I.: Global in time weak solutions for compressible barotropic self-gravitating fluid. Discrete Contin. Dyn. Syst. 11, 113–130 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Feireisl E.: Compressible Navier-Stokes equations with a non-monotone pressure law. J. Differ. Equ. 184, 97–108 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feireisl E.: On the motion of a viscous, compressible and heat conducting fluids. Indiana Univ. Math. J. 53, 1707–1740 (2004)

    Article  MathSciNet  Google Scholar 

  7. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Lecture Series in Mathematics and its Applications, vol. 26. Oxford (2004)

  8. Feireisl E.: On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolinae 42, 83–98 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Feireisl E., Novotný A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible fluid. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hoff D.: Global existence for 1D compressible, isentropic Navier-Stokes equations with Large initial data. Trans. Am. Math. Soc. 303(1), 169–181 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kazhikov A.V., Shelukhin V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. Prikl. Mat. Meh. 41(2), 282–291 (1977)

    MathSciNet  Google Scholar 

  12. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14. AMS (2001)

  13. Lions, P.L.: Mathematical Topics in Fluid Mechanics, vol. 2: Compressible Models. Oxford University Press (1998)

  14. Mellet A., Vasseur A.: On the barotropic compressible Navier-Stokes equations. Comm. Partial Differ. Equ. 32, 431–452 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Serre D.: Solutions faibles globales des equations de Navier-Stokes pour un fluide compressible. C. R. Acad. Sci. Paris Sér. I Math. 303(13), 639–642 (1986)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Ducomet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducomet, B., Nečasová, Š. & Vasseur, A. On global motions of a compressible barotropic and selfgravitating gas with density-dependent viscosities. Z. Angew. Math. Phys. 61, 479–491 (2010). https://doi.org/10.1007/s00033-009-0035-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-009-0035-x

Mathematics Subject Classification (2000)

Navigation