Skip to main content
Log in

The Topological Gradient Method: From Optimal Design to Image Processing

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

The aim of this article is to review and extend the applications of the topological gradient to major image processing problems. We briefly review the topological gradient, and then present its application to the crack localization problem, which can be solved using the Dirichlet to Neumann approach. A very natural application of this technique in image processing is the inpainting problem, which can be solved by identifying the optimal location of the missing edges. Edge detection is of extreme importance, as edges convey essential information in a picture. A second natural application is then the image reconstruction. A class of image reconstruction problems is considered that includes restoration, demosaicing, segmentation and super-resolution. These problems are studied using a unified theoretical framework which is based on the topological gradient method. This tool is able to find the localization and orientation of the edges for blurred, low sampled, partially masked, noisy images. We review existing algorithms and propose new ones. The performance of our approach is compared with conventional image reconstruction processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Alessandrini, A. Diaz Valenzuela, Unique determination of multiple cracks by two measurements, SIAM Journal on Control and Optimization 34 (1996), no. 3, 913–921.

  2. G. Allaire, Shape optimization by the homogenization method, vol. 146, Springer-Verlag, Applied Mathematical Sciences, 2002.

  3. Allaire G., Bonnetier E., Francfort G., Jouve F.: Shape optimization by the homogenization method. Numerische Mathematik 76, 27–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allaire G., de Gournay F., Jouve F., Toader A.-M.: Structural optimization using topological and shape sensitivity via a level set method. Control and Cybernetics 34, 59–80 (2005)

    MathSciNet  MATH  Google Scholar 

  5. G. Allaire and F. Jouve, A level-set method for vibration and multiple loads structural optimization, Computer Methods in Applied Mechanics and Engineering 194 (2005), no. 30-33, 3269 – 3290, Structural and Design Optimization.

  6. Amstutz S.: The topological asymptotic for the navier-stokes equations. ESAIM: Control, Optimisation and Calculus of Variations 11, 401–425 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Amstutz, I. Horchani, and M. Masmoudi, Crack detection by the topological gradient method, Control and Cybernetics 34 (2005), no. 1, 81–101.

  8. S. Amstutz, M. Masmoudi, and B. Samet, The topological asymptotic for the helmoltz equation, SIAM Journal on Control Optimization 42 (2003), no. 5, 1523–1544.

    Google Scholar 

  9. Amstutz S., Takahashi T., Vexler B.: Topological sensitivity analysis for timedependent problems. ESAIM: Control, Optimisation and Calculus of Variations 14, 427–455 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Andrieux S., Ben Abda A.: Identification of planar cracks by complete overdetermined data: inversion formulae. Inverse Problems 12, 553–563 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Aubert and P. Kornprobst, Mathematical problems in image processing: Partial differential equations and the calculus of variations, vol. 147, Springer-Verlag, Applied Mathematical Sciences, November 2001.

  12. J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher, Structure-texture image decomposition - modeling, algorithms, and parameter selection, International Journal of Computer Vision 67 (2006), no. 1, 111–136.

  13. D. Auroux, L. Jaafar Belaid, and B. Rjaibi, Application of the topological gradient method to color image restoration, SIAM J. Imaging Sci. 3 (2010), no. 2, 153–175.

  14. D. Auroux and M. Masmoudi, A one-shot inpainting algorithm based on the topological asymptotic analysis, Computational and Applied Mathematics 25 (2006), no. 2-3, 251– 267.

  15. Auroux D., Masmoudi M.: Image processing by topological asymptotic analysis. ESAIM: Proc.Mathematical methods for imaging and inverse problems 26, 24–44 (2009)

    MathSciNet  Google Scholar 

  16. D. Auroux and M. Masmoudi, Image processing by topological asymptotic expansion, Journal of Mathematical Imaging and Vision 33 (2009), no. 2, 122–134.

  17. L. J. Belaid, M. Jaoua, M. Masmoudi, and L. Siala, Image restoration and edge detection by topological asymptotic expansion, C. R. Acad. Sci. Paris 342 (2006), no. 5, 313–318.

  18. Z. Belhachmi and D. Bucur, Stability and uniqueness for the crack identification problem, SIAM Journal on Control and Optimization 46 (2007), no. 1, 253–273.

  19. Ben Abda A., Ben Ameur H., Jaoua M.: Identification of 2d cracks by elastic boundary measurements. Inverse Problems 15, 67–77 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ben Abda A., Kallel M., Leblond J., Marmorat J.-P.: Line-segment cracks recovery from incomplete boundary data. Inverse Problems 18, 1057–1077 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. P. Bendse and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering 71 (1988), no. 2, 197 – 224.

  22. M. Bendsoe and O. Sigmund, Topology optimization. theory, methods and applications, Springer, 2003.

  23. Bruhl M., Hanke M., Pidcock M.: Crack detection using electrostatic measurements. Mathematical Modelling and Numerical Analysis 35, 595–605 (2001)

    Article  MathSciNet  Google Scholar 

  24. K. Bryan and M.S. Vogelius, A review of selected works on crack identification, Proceedings of the IMA workshop on Geometric Methods in Inverse Problems and PDE Control, August 2001.

  25. A. Buades, B. Coll, and J.MMorel, A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation (SIAM interdisciplinary journal) 4 (2005), no. 2, 490–530.

  26. A. P. Calderón, On an inverse boundary value problem, Seminar on Numerical Analysis and Its Applications to Continuum Physics (Rio de Janeiro, 1980) (Rio de Janeiro, Brasil), Soc. Brasil. Mat., 1980, pp. 65–73.

  27. F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal on Numerical Analysis 29 (1992), no. 1, 182–193.

    Google Scholar 

  28. T. Chan and J. Shen, Mathematical models for local deterministic inpaintings, UCLA CAM Tech. Report 00-11 (2000).

  29. T. Chan and J. Shen, Non-texture inpainting by curvature-driven diffusions (ccd), UCLA CAM Tech. Report 00-35 (2000).

  30. T. Chan and J. Shen, Image processing and analysis: variational, pde, wavelet, and stochastic methods, SIAM, 2005.

  31. M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, Image Processing, IEEE Transactions on 15 (2006), no. 12, 3736 –3745.

  32. M Elad, J Starck, P Querre, and D Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (mca), Applied and Computational Harmonic Analysis 19 (2005), no. 3, 340–358.

  33. A. Friedman and M.S. Vogelius, Determining cracks by boundary measurements, Indiana University Mathematics Journal 38 (1989), no. 3, 527–556.

  34. A. Friedman and M.S. Vogelius , Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem of continuous dependance, Archive for Rational Mechanics and Analysis 105 (1989), no. 4, 299–326.

  35. S. Garreau, P. Guillaume, and M. Masmoudi, The topological asymptotic for pde systems: The elasticity case, SIAM Journal on Control and Optimization 39 (2001), no. 6, 1756– 1778.

    Google Scholar 

  36. Gimp, The gnu image manipulation program, http://www.gimp.or.

  37. D. Glasner, S. Bagon, and M. Irani, Super-resolution from a single image, Proceedings of the IEEE International Conference on Computer Vision (Kyoto, Japan), September 2009.

  38. P. Guillaume and K. Sid Idris, The topological asymptotic expansion for the Dirichlet problem, SIAM Journal on Control and Optimization 41 (2002), no. 4, 1042–1072.

  39. P. Guillaume and K. Sid Idris, The topological sensitivity and shape optimization for the Stokes equations, SIAM Journal on Control and Optimization 43 (2004), no. 1, 1–31.

  40. Gunturk B.K., Altunbasak Y., Mersereau R.M.: Color plane interpolation using alternating projections. Image Processing, IEEE Transactions on 11, 997–1013 (2002)

    Article  Google Scholar 

  41. Hirakawa K., Parks T.W.: Joint demosaicing and denoising, Image Processing. IEEE Transactions on Image Processing 15, 2146–2157 (2006)

    Article  Google Scholar 

  42. Kohn R., Vogelius M.: Relaxation of a variational method for impedance computed tomography. Communications on Pure and Applied Mathematics 40, 745–777 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Kubo and K. Ohji, Inverse problems and the electric potential computed tomography method as one of their application, Mechanical Modeling of New Electromagnetic Materials (1990).

  44. S. Larnier and J. Fehrenbach, Edge detection and image restoration with anisotropic topological gradient, Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on, march 2010, pp. 1362 –1365.

  45. F. Malgouyres and F. Guichard, Edge direction preserving image zooming: a mathematical and numerical analysis, SIAM Journal on Numerical Analysis 39 (2002), no. 1, 1–37.

    Google Scholar 

  46. M. Masmoudi, The topological asymptotic, Glowinski, R., Karawada, H., Periaux, J. (eds.) Computational Methods for Control Applications, GAKUTO international series, Mathematical science and applications 16 (2001), 53–72.

  47. Mohammadi B., Pironneau O.: Shape optimization in fluid mechanics. Annual Review of Fluid Mechanics 36, 255–279 (2003)

    Article  MathSciNet  Google Scholar 

  48. M. Ng, P. Weiss, and X.-M. Yuan, Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods, SIAMjournal on Scientific Computing (2010), Accepted for publication.

  49. N. Nishimura and S. Kobayashi, A boundary integral equation method for an inverse problem related to crack detection, International Journal for Numerical Methods in Engineering 32 (1991), no. 7, 1371–1387.

    Google Scholar 

  50. S. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum, Journal of Computational Physics 171 (2001), no. 1, 272 – 288.

    Google Scholar 

  51. S. Osher and J. A Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics 79 (1988), no. 1, 12 – 49.

  52. S. C. Park, M. K. Park, and M. G. Kang, Super-resolution image reconstruction: a technical overview, Signal Processing Magazine, IEEE 20 (2003), no. 3, 21–36.

  53. P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, Proc. IEEE Comp. Soc. Workshop on Computer Vision (Miami Beach, Nov. 30 Dec. 2, 1987) (1987), 1622.

  54. P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990), no. 7, 629–639.

    Google Scholar 

  55. G. Peyre, Non-local means toolbox.

  56. F. Santosa and M. Vogelius, A computational algorithm to determine cracks from electrostatic boundary measurements, International Journal of Engineering Science 29 (1991), no. 8, 917 – 937.

  57. A. Schumacher, Topologieoptimisierung von bauteilstrukturen unter verwendung von lopchpositionierungkrieterien, Ph.D. thesis, Universitat-Gesamthochschule Siegen, Germany, 1995.

  58. Sokolowski J., Zochowski A.: On the topological derivative in shape optimization. SIAM Journal on Control and Optimization 37, 1241–1272 (1999)

    Article  MathSciNet  Google Scholar 

  59. D. Terzopoulos, Regularization of inverse visual problems involving discontinuities, Pattern Analysis and Machine Intelligence, IEEE Transactions on PAMI-8 (1986), no. 4, 413 –424.

  60. M. Y. Wang, X.Wang, and D. Guo, A level set method for structural topology optimization, Computer Methods in Applied Mechanics and Engineering 192 (2003), no. 1-2, 227 – 246.

  61. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image quality assessment : From error visibility to structural similarity, IEEE Transactions on Image Processing 13 (2004), no. 4, 600–612.

    Google Scholar 

  62. J. Weickert, Anisotropic diffusion in image processing, Ph.d. thesis, Dept. of Mathematics, University of Kaiserslautern, Germany, 1996.

  63. Weickert J.: Theoretical foundations of anisotropic diffusion in image processing. Computing, Suppl 11, 221–236 (1996)

    Article  Google Scholar 

  64. P. Weiss, L. Blanc-Fraud, and G. Aubert, Efficient schemes for total variation minimization under constraints in image processing, SIAM journal on Scientific Computing 31 (2009), no. 3, 2047–2080.

  65. P. Wen, X. Wu, and C. Wu, An interactive image inpainting method based on rbf networks, Advances in Neural Networks - ISNN 2006, Lecture Notes in Computer Science, vol. 3972, Springer Berlin / Heidelberg, 2006, pp. 629–637.

  66. T. Zhou, F. Tang, J. Wang, Z. Wang, and Q. Peng, Digital image inpainting with radial basis functions, Journal of Image and Graphics 9 (2004), no. 10, 1190–1196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislas Larnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larnier, S., Fehrenbach, J. & Masmoudi, M. The Topological Gradient Method: From Optimal Design to Image Processing. Milan J. Math. 80, 411–441 (2012). https://doi.org/10.1007/s00032-012-0196-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-012-0196-5

Mathematics Subject Classification (2010)

Keywords

Navigation