Article

Transformation Groups

, Volume 16, Issue 1, pp 51-69

First online:

Solvable Lie algebras are not that hypo

  • Diego ContiAffiliated withDipartimento di Matematica e Applicazioni, Università di Milano Bicocca Email author 
  • , Marisa FernándezAffiliated withFacultad de Ciencia y Tecnología, Departamento de Matemáticas, Universidad del País Vasco
  • , José A. SantistebanAffiliated withFacultad de Ciencia y Tecnología, Departamento de Matemáticas, Universidad del País Vasco

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We study a type of left-invariant structure on Lie groups or, equivalently, on Lie algebras. We introduce obstructions to the existence of a hypo structure, namely the five-dimensional geometry of hypersurfaces in manifolds with holonomy SU(3). The choice of a splitting \( {\mathfrak{g}^*} = {V_1} \oplus {V_2} \), and the vanishing of certain associated cohomology groups, determine a first obstruction. We also construct necessary conditions for the existence of a hypo structure with a fixed almost-contact form. For nonunimodular Lie algebras, we derive an obstruction to the existence of a hypo structure, with no choice involved. We apply these methods to classify solvable Lie algebras that admit a hypo structure.

AMS classification

53C25 (primary) 53C15, 17B30, 53D15 (secondary)