Selecta Mathematica

, 4:213

Quantization of Lie bialgebras, II

  • P. Etingof
  • D. Kazhdan
Article

DOI: 10.1007/s000290050030

Cite this article as:
Etingof, P. & Kazhdan, D. Sel. math., New ser. (1998) 4: 213. doi:10.1007/s000290050030

Abstract.

This paper is a continuation of [EK]. We show that the quantization procedure of [EK] is given by universal acyclic formulas and defines a functor from the category of Lie bialgebras to the category of quantized universal enveloping algebras. We also show that this functor defines an equivalence between the category of Lie bialgebras over k [[h]] and the category of quantized universal enveloping (QUE) algebras.

Key words. Lie bialgebra, Hopf algebra, quantum group, quantization, Yang-Baxter equation. 

Copyright information

© Birkhäuser Verlag, Basel 1998

Authors and Affiliations

  • P. Etingof
    • 1
  • D. Kazhdan
    • 1
  1. 1.Department of Mathematics, Harvard University, Cambridge, MA 02138, USA, e-mail: etingof@math.harvard.edu, e-mail: kazhdan@math.harvard.edu US

Personalised recommendations