Selecta Mathematica

, 4:117

Central extensions of gauge groups revisited

Authors

  • A. Losev
    • Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
  • G. Moore
    • Department of Physics, Yale University, Box 208120, New Haven, CT 06520, USA, e-mail: losev@genesis5.physics.yale.edu, e-mail: moore@castalia.physics.yale.edu, e-mail: samson@euler.physics.yale.edu
  • N. Nekrasov
    • Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
  • S. Shatashvili
    • Department of Physics, Yale University, Box 208120, New Haven, CT 06520, USA, e-mail: losev@genesis5.physics.yale.edu, e-mail: moore@castalia.physics.yale.edu, e-mail: samson@euler.physics.yale.edu
Article

DOI: 10.1007/s000290050026

Cite this article as:
Losev, A., Moore, G., Nekrasov, N. et al. Sel. math., New ser. (1998) 4: 117. doi:10.1007/s000290050026

Abstract.

We present an explicit construction for the central extension of the group Map(X, G) where X is a compact manifold and G is a Lie group. If X is a complex curve we obtain a simple construction of the extension by the Picard variety Pic(X). The construction is easily adapted to the extension of Aut(E), the gauge group of automorphisms of a nontrivial vector bundle E.

Key words. Central extensions, gauge groups, infinite-dimensional Lie groups, characteristic classes, anomalies.

Copyright information

© Birkhäuser Verlag, Basel, 1998