Skip to main content
Log in

Methods for reactive oxygen species (ROS) detection in aqueous environments

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

This review summarizes direct and indirect analytical methods for the detection and quantification of the reactive oxygen species (ROS): 1O2, O ·−2 /HOO·, H2O2, HO·, and CO ·−3 in aqueous solution. Each section briefly describes the chemical properties of a specific ROS followed by a table (organized alphabetically by detection method, i.e., absorbance, chemiluminescence, etc.) summarizing the nature of the observable (associated analytical signal) for each method, limit of detection, application notes, and reaction of the probe molecule with the particular ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams R, Altschul AM, Hogness TR (1942) Cytochrome c peroxidase II. The peroxidase–hydrogen peroxide complex. J Biol Chem 142(1):303–316

    CAS  Google Scholar 

  • Acero JL, Von Gunten U (2001) Characterization of oxidation processes: ozonation and the AOP O3/H2O2. J Am Water Works Assoc 93(10):90–100

    CAS  Google Scholar 

  • Adam W, Kazakov DV, Kazakov VP (2005) Singlet-oxygen chemiluminescence in peroxide reactions. Chem Rev 105(9):3371–3387. doi:10.1021/Cr0300035

    PubMed  CAS  Google Scholar 

  • Adams GE, Willson RL (1969) Pulse radiolysis studies on oxidation of organic radicals in aqueous solution. T Faraday Soc 65(563P):2981–2982

    CAS  Google Scholar 

  • Adams GE, Boag JW, Michael BD (1964) Spectroscopic studies of reactions of OH radical in aqueous solutions. P Chem Soc London 4:492–505

    Google Scholar 

  • Afanas’ev IB, Ostrakhovitch EA, Mikhal’chik EV, Korkina LG (2001) Direct enzymatic reduction of lucigenin decreases lucigenin-amplified chemiluminescence produced by superoxide ion. Luminescence 16(5):305–307

    PubMed  Google Scholar 

  • Alaghmand M, Blough NV (2007) Source-dependent variation in hydroxyl radical production by airborne particulate matter. Environ Sci Technol 41(7):2364–2370. doi:10.1021/Es061902o

    PubMed  CAS  Google Scholar 

  • Alfassi ZB (ed) (1999) General aspects of the chemistry of radicals. The chemistry of free radicals. Wiley, New York

    Google Scholar 

  • Allouch A, Roubaud V, Lauricella R, Bouteiller JC, Tuccio A (2003) Preparation and use as spin trapping agents of new ester-nitrones. Org Biomol Chem 1(3):593–598

    PubMed  CAS  Google Scholar 

  • Allouch A, Roubaud V, Lauricella R, Bouteiller JC, Tuccio E (2005) Spin trapping of superoxide by diester-nitrones. Org Biomol Chem 3(13):2458–2462

    PubMed  CAS  Google Scholar 

  • Altschul AM, Abrams R, Hogness TR (1940) Cytochrome c peroxidase. J Biol Chem 136(3):777–794

    CAS  Google Scholar 

  • Anastasio C, Matthew BM (2006) A chemical probe technique for the determination of reactive halogen species in aqueous solution: part 2—chloride solutions and mixed bromide/chloride solutions. Atmos Chem Phys 6(9):2439–2451

    CAS  Google Scholar 

  • Anastasio C, McGregor KG (2001) Chemistry of fog waters in California’s Central Valley: 1. In situ photoformation of hydroxyl radical and singlet molecular oxygen. Atmos Environ 35(6):1079–1089. doi:10.1016/s1352-2310(00)00281-8

  • Andersen LK, Ogilby PR (2002) Absorption spectrum of singlet oxygen a1Δg → b1Σg+ in D2O: enabling the test of a model for the effect of solvent on oxygen’s radiative transitions. J Phys Chem A 106(46):11064–11069

    CAS  Google Scholar 

  • Andreae WA (1955) Sensitive method for the estimation of hydrogen peroxide in biological materials. Nature 175(4463):859–860

    PubMed  CAS  Google Scholar 

  • Armstrong WA, Grant DW (1958) Highly sensitive chemical dosimeter for ionizing radiation. Nature 182(4637):747

    Google Scholar 

  • Armstrong WA, Humphreys WG (1965) A L.E.T. independent dosimeter based on chemiluminescent determination of H2O2. Can J Chem 43(9):2576–2584

    CAS  Google Scholar 

  • Armstrong WA, Black BA, Grant DW (1960) The radiolysis of aqueous calcium benzoate and benzoic acid solutions. J Phys Chem 64(10):1415–1419

    CAS  Google Scholar 

  • Armstrong DA, Waltz WL, Rauk A (2006) Carbonate radical anion—thermochemistry. Can J Chem 84(12):1614–1619

    CAS  Google Scholar 

  • Aubry JM, Rigaudy J, Cuong NK (1981a) A water-soluble rubrene derivative—synthesis, properties and trapping of 1O2 in aqueous-solution. Photochem Photobiol 33(2):149–153

    Google Scholar 

  • Aubry JM, Rigaudy J, Ferradini C, Pucheault J (1981b) A search for singlet oxygen in the disproportionation of superoxide anion. J Am Chem Soc 103(16):4965–4966

    CAS  Google Scholar 

  • Aurich HG (1982) Nitroxides. In: Patai S (ed) The chemistry of functional groups, supplemental F: the chemistry of amino, nitroso, and nitro compounds and their derivatives, part 1. Wiley, Chichester

    Google Scholar 

  • Backa S, Jansbo K, Reitberger T (1997) Detection of hydroxyl radicals by a chemiluminescence method. A critical review. Holzforschung 51(6):557–564

    CAS  Google Scholar 

  • Bader H, Sturzenegger V, Hoigne J (1988) Photometric-method for the determination of low concentrations of hydrogen-peroxide by the peroxidase catalyzed oxidation of N, N-Diethyl-P-Phenylenediamine (Dpd). Water Res 22(9):1109–1115

    CAS  Google Scholar 

  • Baga AN, Johnson GRA, Nazhat NB, Saadallanazhat RA (1988) A simple spectrophotometric determination of hydrogen-peroxide at low concentrations in aqueous-solution. Anal Chim Acta 204(1–2):349–353

    CAS  Google Scholar 

  • Baier A, Maier M, Engl R, Landthaler M, Baumler W (2005) Time-resolved investigations of singlet oxygen luminescence in water, in phosphatidylcholine, and in aqueous suspensions of phosphatidylcholine or HT29 cells. J Phys Chem B 109(7):3041–3046

    PubMed  CAS  Google Scholar 

  • Baier J, Fuss T, Pollmann C, Wiesmann C, Pindl K, Engl R, Baumer D, Maier M, Landthaler M, Baumler W (2007) Theoretical and experimental analysis of the luminescence signal of singlet oxygen for different photosensitizers. J Photochem Photobiol B 87(3):163–173

    PubMed  CAS  Google Scholar 

  • Barja G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomembr 34(3):227–233. doi:10.1023/A:1016039604958

    Google Scholar 

  • Bartosz G (2006) Use of spectroscopic probes for detection of reactive oxygen species. Clin Chim Acta 368(1–2):53–76. doi:10.1016/j.cca.2005.12.039

    PubMed  CAS  Google Scholar 

  • Baxter RM, Carey JH (1983) Evidence for photochemical generation of superoxide ion in humic waters. Nature 306(5943):575–576

    CAS  Google Scholar 

  • Behar D, Czapski G, Duchovny I (1970a) Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions. J Phys Chem 74(10):2206–2210

    CAS  Google Scholar 

  • Behar D, Czapski G, Rabani J, Dorfman LM, Schwarz HA (1970b) Acid dissociation constant and decay kinetics of perhydroxyl radical. J Phys Chem 74(17):3209–3213

    CAS  Google Scholar 

  • Benov L, Sztejnberg L, Fridovich I (1998) Critical evaluation of the use of hydroethidine as a measure of superoxide anion radical. Free Radic Biol Med 25(7):826–831

    PubMed  CAS  Google Scholar 

  • Bielski BHJ (1978) Reevaluation of spectral and kinetic-properties of HO2 and O2 free radicals. Photochem Photobiol 28(4–5):645–649

    CAS  Google Scholar 

  • Bielski BHJ, Allen AO (1967) Radiation chemistry of aqueous tetranitromethane solutions in presence of air. J Phys Chem 71(13):4544–4549

    CAS  Google Scholar 

  • Bielski BHJ, Shiue GG, Bajuk S (1980) Reduction of nitro blue tetrazolium by CO2 and O ·−2 radicals. J Phys Chem 84(8):830–833

    CAS  Google Scholar 

  • Blough NV, Zepp RG (1995) Reactive oxygen species in natural waters. In: Foote CS, Valentine JS, Greenburg A, Liebman JF (eds) Active oxygen in chemistry, vol 2. Blackie Academic and Professional, Glasgow, pp 280–333

  • Bonini MG, Radi R, Ferrer-Sueta G, Ferreira AMD, Augusto O (1999) Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide. J Biol Chem 274(16):10802–10806

    PubMed  CAS  Google Scholar 

  • Bors W, Michel C, Saran M (1979a) Superoxide anions do not react with hydroperoxides. FEBS Lett 107(2):403–406

    PubMed  CAS  Google Scholar 

  • Bors W, Saran M, Michel C (1979b) Pulse-radiolytic investigations of catechols and catecholamines. 3. Adrenalone. J Phys Chem 83(19):2447–2452

    CAS  Google Scholar 

  • Bors W, Saran M, Michel C (1982) Radical intermediates involved in the bleaching of the carotenoid crocin—hydroxyl radicals, superoxide anions and hydrated electrons. Int J Radiat Biol 41(5):493–501

    CAS  Google Scholar 

  • Botsivali M, Evans DF (1979) New trap for singlet oxygen in aqueous-solution. J Chem Soc Chem Commun 24:1114–1116

    Google Scholar 

  • Bottle SE, Micallef AS (2003) Synthesis and EPR spin trapping properties of a new isoindole-based nitrone: 1,1,3-trimethylisoindole N-oxide (TMINO). Org Biomol Chem 1(14):2581–2584

    PubMed  CAS  Google Scholar 

  • Bottle SE, Hanson GR, Micallef AS (2003) Application of the new EPR spin trap 1,1,3-trimethylisoindole N-oxide (TMINO) in trapping HO· and related biologically important radicals. Org Biomol Chem 1(14):2585–2589

    PubMed  CAS  Google Scholar 

  • Boveris A, Martino E, Stoppani AOM (1977) Evaluation of horseradish peroxidase-scopoletin method for measurement of hydrogen-peroxide formation in biological-systems. Anal Biochem 80(1):145–158

    PubMed  CAS  Google Scholar 

  • Braun AM, Frimmel FH, Hoigne J (1986) Singlet oxygen analysis in irradiated surface waters. Int J Environ Anal Chem 27:137–149

    CAS  Google Scholar 

  • Brezonik PL, Fulkerson-Brekken J (1998) Nitrate-induced photolysis in natural waters: controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents. Environ Sci Technol 32(19):3004–3010

    CAS  Google Scholar 

  • Britigan B, Coffman T, Buettner G (1990) Spin trapping evidence for the lack of significant hydroxyl radical production during the respiration burst of human phagocytes using a spin adduct resistant to superoxide-mediated destruction. J Biol Chem 265(5):2650–2656

    PubMed  CAS  Google Scholar 

  • Buettner GR (1985) Spin trapping of hydroxyl radical. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 151–155

    Google Scholar 

  • Busset C, Mazellier P, Sarakha M, De Laat J (2007) Photochemical generation of carbonate radicals and their reactivity with phenol. J Photochem Photobiol A 185(2–3):127–132

    CAS  Google Scholar 

  • Butler J, Jayson GG, Swallow AJ (1975) Reaction between superoxide anion radical and cytochrome-C. Biochim Biophys Acta 408(3):215–222

    PubMed  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical-review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O) in aqueous solution. J Phys Chem Ref Data 17(2):513–886

    CAS  Google Scholar 

  • Canonica S, Kohn T, Mac M, Real FJ, Wirz J, Von Gunten U (2005) Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds. Environ Sci Technol 39(23):9182–9188

    PubMed  CAS  Google Scholar 

  • Chance B (1943) The kinetics of the enzyme-substrate compound of peroxidase. J Biol Chem 151(2):553–577

    CAS  Google Scholar 

  • Chen SR, Gee KR (2000) Redox-dependent trafficking of 2,3,4,5,6-pentafluorodihydrotetramethylrosaimine, a novel fluorogenic indicator of cellular oxidative activity. Free Radic Biol Med 28(8):1266–1278

    PubMed  CAS  Google Scholar 

  • Chen SN, Hoffman MZ (1973) Rate constants for reaction of carbonate radical with compounds of biochemical interest in neutral aqueous-solution. Radiat Res 56(1):40–47

    PubMed  CAS  Google Scholar 

  • Chen S, Cope VW, Hoffman MZ (1973) Behavior of CO3 radicals generated in flash-photolysis of carbonatoamine complexes of Cobalt(III) in aqueous solution. J Phys Chem 77(9):1111–1116

    CAS  Google Scholar 

  • Chen SN, Hoffman MZ, Parsons GH (1975) Reactivity of carbonate radical toward aromatic-compounds in aqueous-solution. J Phys Chem 79(18):1911–1912

    CAS  Google Scholar 

  • Childs RE, Bardsley WG (1975) Steady-state kinetics of peroxidase with 2,2′-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) as chromogen. Biochem J 145(1):93–103

    PubMed  CAS  Google Scholar 

  • Cooper WJ, Zika RG (1983) Photochemical formation of hydrogen-peroxide in surface and ground waters exposed to sunlight. Science 220(4598):711–712

    PubMed  CAS  Google Scholar 

  • Cooper WJ, Saltzman ES, Zika RG (1987) The contribution of rainwater to variability in surface hydrogen-peroxide. J Geophys Res Ocean 92((C3)):2970–2980

    CAS  Google Scholar 

  • Cooper WJ, Moegling JK, Kieber RJ, Kiddle JJ (2000) A chemiluminescence method for the analysis of H2O2 in natural waters. Mar Chem 70(1–3):191–200

    CAS  Google Scholar 

  • Corey EJ, Taylor WC (1964) Study of peroxidation of organic compounds by externally generated singlet oxygen molecules. J Am Chem Soc 86(18):3881–3882

    CAS  Google Scholar 

  • Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide Biol Chem 1(2):145–157

    CAS  Google Scholar 

  • Czapski G, Bielski BHJ (1963) Formation and decay of H2O3 and HO2 in electron-irradiated aqueous solutions. J Phys Chem 67(10):2180–2184

    CAS  Google Scholar 

  • Czapski G, Dorfman LM (1964) Pulse radiolysis studies. V. Transient spectra and rate constants in oxygenated aqueous solutions. J Phys Chem 68(5):1169–1177

    Google Scholar 

  • Czapski G, Holcman J, Bielski BHJ (1994) Reactivity of nitric-oxide with simple short-lived radicals in aqueous-solutions. J Am Chem Soc 116(25):11465–11469

    CAS  Google Scholar 

  • Czapski G, Lymar SV, Schwarz HA (1999) Acidity of the carbonate radical. J Phys Chem A 103(18):3447–3450

    CAS  Google Scholar 

  • Dasgupta PK, Hwang H (1985) Application of a nested loop system for the flow-injection analysis of trace aqueous peroxides. Anal Chem 57(6):1009–1012

    CAS  Google Scholar 

  • Denham K, Milofsky RE (1998) Photooxidation of 3-substituted pyrroles: a postcolumn reaction detection system for singlet molecular oxygen in HPLC. Anal Chem 70(19):4081–4085

    PubMed  CAS  Google Scholar 

  • Dickson J, Odom M, Ducheneaux F, Murray J, Milofsky RE (2000) Coupling photochemical reaction detection based on singlet oxygen sensitization to capillary electrochromatography. Anal Chem 72(14):3038–3042

    PubMed  CAS  Google Scholar 

  • Dixon WT, Norman ROC (1963) Electron spin resonance studies of oxidation. 1. Alcohols. J Chem Soc 5:3119–3120

    Google Scholar 

  • Donahue WF (1998) Interference in fluorometric hydrogen peroxide determination using scopoletin horseradish peroxidase. Environ Toxicol Chem 17(5):783–787

    CAS  Google Scholar 

  • Dorfman LM, Taub IA, Buhler RE (1962) Pulse radiolysis studies. I. Transient spectra and reaction-rate constants in irradiated aqueous solutions of benzene. J Chem Phys 36(11):3051–3061

    CAS  Google Scholar 

  • Draper WM, Crosby DG (1983a) The photochemical generation of hydrogen-peroxide in natural-waters. Arch Environ Con Tox 12(1):121–126

    CAS  Google Scholar 

  • Draper WM, Crosby DG (1983b) Photochemical generation of superoxide radical-anion in water. J Agric Food Chem 31(4):734–737

    CAS  Google Scholar 

  • Duesterberg CK, Cooper WJ, Waite TD (2005) Fenton-mediated oxidation in the presence and absence of oxygen. Environ Sci Technol 39(13):5052–5058. doi:10.1021/es048378a

    PubMed  CAS  Google Scholar 

  • Dukes EK, Hyder ML (1964) Determination of peroxide by automatic colorimetry. Anal Chem 36(8):1689–1690

    CAS  Google Scholar 

  • Edman L, Rigler R (2000) Memory landscapes of single-enzyme molecules. Proc Natl Acad Sci USA 97(15):8266–8271

    PubMed  CAS  Google Scholar 

  • Egorov SY, Kamalov VF, Koroteev NI, Krasnovskii AA Jr, Toleutaev BN, Zinukov SV (1989) Rise and decay kinetics of photosensitized singlet oxygen luminescence in water. Measurements with nanosecond time-correlated single photon counting technique. Chem Phys Lett 163(4-5):421–424

    CAS  Google Scholar 

  • Elango TP, Ramakrishnan V, Vancheesan S, Kuriacose JC (1985) Reactions of the carbonate radical with aliphatic-amines. Tetrahedron 41(18):3837–3843

    CAS  Google Scholar 

  • Elliot AJ, Mccracken DR, Buxton GV, Wood ND (1990) Estimation of rate constants for near-diffusion-controlled reactions in water at high-temperatures. J Chem Soc Faraday Trans 86(9):1539–1547

    CAS  Google Scholar 

  • Elovitz MS, von Gunten U (1999) Hydroxyl radical ozone ratios during ozonation processes. Ozone Sci Eng 21(3):239–260

    CAS  Google Scholar 

  • Ernstbrunner EE, Girling RB, Grossman WEL, Hester RE (1978) Free-radical studies by resonance raman-spectroscopy. 2. Diazabicyclo-octane radical cation. J Chem Soc Faraday Trans 2(74):501–508

    Google Scholar 

  • Evans DF, Upton MW (1985) Studies on singlet oxygen in aqueous-solution. 1. Formation of singlet oxygen from hydrogen-peroxide with 2-electron oxidants. J Chem Soc Dalton 6:1141–1145

    Google Scholar 

  • Fang XW, Mark G, vonSonntag C (1996) OH radical formation by ultrasound in aqueous solutions. 1. The chemistry underlying the terephthalate dosimeter. Ultrason Sonochem 3(1):57–63

    CAS  Google Scholar 

  • Farmilo A, Wilkinson F (1973) Mechanism of quenching of singlet oxygen in solution. Photochem Photobiol 18(6):447–450

    PubMed  CAS  Google Scholar 

  • Faust BC (1999) Aquatic photochemical reactions in atmospheric, surface, and marine waters. Influences on oxidant formation and pollutant degradation. In: Boule P (ed) Handbook of environmental chemistry, vol 2(Pt. L). Springer, Berlin, pp 101–122

  • Ferry JL, Fox MA (1999) Temperature effects on the kinetics of carbonate radical reactions in near-critical and supercritical water. J Phys Chem A 103(18):3438–3441

    CAS  Google Scholar 

  • Finkelstein E, Rosen GM, Rauckman EJ, Paxton J (1979) Spin trapping of superoxide. Mol Pharmacol 16(2):676–685

    PubMed  CAS  Google Scholar 

  • Finkelstein E, Rosen GM, Rauckman EJ (1980a) Spin trapping—kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. J Am Chem Soc 102(15):4994–4999

    CAS  Google Scholar 

  • Finkelstein E, Rosen GM, Rauckman EJ (1980b) Spin trapping of superoxide and hydroxyl radical—practical aspects. Arch Biochem Biophys 200(1):1–16

    PubMed  CAS  Google Scholar 

  • Finkelstein E, Rosen GM, Rauckman EJ (1982) Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts. Mol Pharmacol 21(2):262–265

    PubMed  CAS  Google Scholar 

  • Flors C, Fryer MJ, Waring J, Reeder B, Bechtold U, Mullineaux PM, Nonell S, Wilson MT, Baker NR (2006) Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, singlet oxygen sensor green. J Exp Bot 57(8):1725–1734

    PubMed  CAS  Google Scholar 

  • Foote CS, Denny RW (1968) Chemistry of singlet oxygen VII. Quenching by β-carotene. J Am Chem Soc 90(22):6233–6235

    CAS  Google Scholar 

  • Foote CS, Wuesthof MT, Wexler S, Burstain IG, Denny R, Schenck GO, Schulte-Elte K-H (1967) Photosensitized oxygenation of alkyl-substituted furans. Tetrahedron 23(6):2583–2584

    Google Scholar 

  • Foote CS, Chang YC, Denny RW (1970a) Chemistry of singlet oxygen X. Carotenoid quenching parallels biological protection. J Am Chem Soc 92(17):5216–5218

    PubMed  CAS  Google Scholar 

  • Foote CS, Chang YC, Denny RW (1970b) Chemistry of singlet oxygen XI. Cis-trans isomerization of carotenoids by singlet oxygen and a probable quenching mechanism. J Am Chem Soc 92(17):5218–5219

    PubMed  CAS  Google Scholar 

  • Foote CS, Denny RW, Weaver L, Chang Y, Peters J (1970c) Quenching of singlet oxygen. Ann N Y Acad Sci 171(1):139–145

    CAS  Google Scholar 

  • Frejaville C, Karoui H, Tuccio B, Lemoigne F, Culcasi M, Pietri S, Lauricella R, Tordo P (1994) 5-Diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO)—a new phosphorylated nitrone for the efficient in vitro and in vivo spin-trapping of oxygen-centered radicals. J Chem Soc Chem Commun 15:1793–1794

    Google Scholar 

  • Frejaville C, Karoui H, Tuccio B, Lemoigne F, Culcasi M, Pietri S, Lauricella R, Tordo P (1995) 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide—a new efficient phosphorylated nitrone for the in vitro and in vivo spin-trapping of oxygen-centered radicals. J Med Chem 38(2):258–265

    PubMed  CAS  Google Scholar 

  • Fujimori K, Komiyama T, Tabata H, Nojima T, Ishiguro K, Sawaki Y, Tatsuzawa H, Nakano M (1998) Chemiluminescence of Cypridina luciferin analogs. Part 3. MCLA chemiluminescence with singlet oxygen generated by the retro-Diels–Alder reaction of a naphthalene endoperoxide. Photochem Photobiol 68(2):143–149

    CAS  Google Scholar 

  • Fujiwara K, Kumata H, Kando N, Sakuma E, Aihara M, Morita Y, Miyakawa T (2006) Flow injection analysis to measure the production ability of superoxide with chemiluminescence detection in natural waters. Int J Environ Anal Chem 86(5):337–346

    CAS  Google Scholar 

  • Giraud M, Valla A, Bazin M, Santus R, Momzikoff A (1982) A new water-soluble singlet oxygen probe. J Chem Soc Chem Commun 20:1147–1148

    Google Scholar 

  • Glaze WH, Kang JW (1989) Advanced oxidation processes—test of a kinetic-model for the oxidation of organic-compounds with ozone and hydrogen-peroxide in a semibatch reactor. Ind Eng Chem Res 28(11):1580–1587

    CAS  Google Scholar 

  • Glaze WH, Lay Y, Kang JW (1995) Advanced oxidation processes—a kinetic-model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen-peroxide and UV-radiation. Ind Eng Chem Res 34(7):2314–2323

    CAS  Google Scholar 

  • Glover DJ, Landsman SG (1964) Spectrophotometric method for determination of tetranitromethane in solution and in air. Anal Chem 36(8):1690–1691

    CAS  Google Scholar 

  • Godrant A, Rose AL, Sarthou G, Waite TD (2009) New method for the determination of extracellular production of superoxide by marine phytoplankton using the chemiluminescence probes MCLA and red-CLA. Limnol Oceanogr Methods 7:682–692

    CAS  Google Scholar 

  • Goldstein S, Rosen GM, Russo A, Samuni A (2004) Kinetics of spin trapping superoxide, hydroxyl, and aliphatic radicals by cyclic nitrones. J Phys Chem A 108(32):6679–6685

    CAS  Google Scholar 

  • Goldstone JV, Voelker BM (2000) Chemistry of superoxide radical in seawater: CDOM associated sink of superoxide in coastal waters. Environ Sci Technol 34(6):1043–1048

    CAS  Google Scholar 

  • Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65(2–3):45–80. doi:10.1016/j.jbbm.2005.10.003

    PubMed  CAS  Google Scholar 

  • Goto T, Takagi T (1980) Chemiluminescence of a Cypridina luciferin analogue, 2-methyl-6-phenol-3,7-dihyrdoimadizo[1,2a]-pyrazin-3-one, in the presence of the xanthine–xanthine oxidase system. Chem Soc Jpn 53:833–834

    CAS  Google Scholar 

  • Grandbois M, Latch DE, McNeill K (2008) Microheterogeneous concentrations of singlet oxygen in natural organic matter isolate solutions. Environ Sci Technol 42(24):9184–9190

    PubMed  CAS  Google Scholar 

  • Greenstock CL, Ruddock GW (1976) Determination of superoxide (O2 ) radical-anion reaction-rates using pulse-radiolysis. Int J Radiat Phys Chem 8(3):367–369

    CAS  Google Scholar 

  • Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Guilbault GG, Brignac PJ Jr, Juneau M (1968) New substrates for the fluorometric determination of oxidative enzymes. Anal Chem 40(8):1256–1263

    PubMed  CAS  Google Scholar 

  • Gupta BL (1973) Microdetermination techniques for H2O2 in irradiated solutions. Microchem J 18(4):363–374

    CAS  Google Scholar 

  • Gutteridge JMC, Maidt L, Poyer L (1990) Superoxide-dismutase and fenton chemistry—reaction of ferric EDTA complex and ferric-bipyridyl complex with hydrogen-peroxide without the apparent formation of iron(II). Biochem J 269(1):169–174

    PubMed  CAS  Google Scholar 

  • Haag WR, Hoigne J (1985) Photo-sensitized oxidation in natural-water via.OH radicals. Chemosphere 14(11–12):1659–1671

    CAS  Google Scholar 

  • Haag WR, Hoigne J (1986) Singlet oxygen in surface waters. 3. Photochemical formation and steady-state concentrations in various types of waters. Environ Sci Technol 20(4):341–348

    PubMed  CAS  Google Scholar 

  • Haag WR, Yao CCD (1993) Ozonation of US drinking water sources: HO· concentration and oxidation-competition values. In: Ozone in water and wastewater treatment, Proceedings of the eleventh ozone world congress, August 29–September 13. pp S-17-119-126

  • Haag WR, Hoigne J, Gassman E, Braun AM (1984a) Singlet oxygen in surface waters—part I: furfuryl alcohol as a trapping agent. Chemosphere 113(5/6):631–640

    Google Scholar 

  • Haag WR, Hoigne J, Gassman E, Braun AM (1984b) Singlet oxygen in surface waters–part II: quantum yields of its production by some natural humic materials as a function of wavelength. Chemosphere 113(5/6):641–650

    Google Scholar 

  • Hakkinen PJ, Anesio AM, Graneli W (2004) Hydrogen peroxide distribution, production, and decay in boreal lakes. Can J Fish Aquat Sci 61(8):1520–1527

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Hydroxyl radicals assayed by aromatic hydroxylation and deoxyribose degradation. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 157–163

    Google Scholar 

  • Hansard SP, Vermilyea WA, Voelker MB (2010) Measurements of superoxide radical concentration and decay kinetics in the Gulf of Alaska. Deep Sea Res I 57(9):1111–1119

    Google Scholar 

  • Harbour JR, Chow V, Bolton JR (1974) Electron-spin resonance study of spin adducts of OH and HO2 radicals with nitrones in ultraviolet photolysis of aqueous hydrogen-peroxide solutions. Can J Chem 52(20):3549–3553

    CAS  Google Scholar 

  • Hasty N, Merkel PB, Radlick P, Kearns DR (1972) Role of azide in singlet oxygen reactions: reaction of azide with singlet oxygen. Tetrahedron Lett 1:49–52

    Google Scholar 

  • Hauser TR, Kolar MA (1968) Spectrophotometric determination of hydrogen peroxide in aqueous media with 1,2-di-(4-pyridyl)ethylene. Anal Chem 40:231–232

    PubMed  CAS  Google Scholar 

  • Heller MI, Croot PL (2010a) Application of a superoxide (O2 ) thermal source (SOTS-1) for the determination and calibration of O2 fluxes in seawater. Anal Chim Acta 667(1–2):1–13. doi:10.1016/j.aca.2010.03.054

    PubMed  CAS  Google Scholar 

  • Heller MI, Croot PL (2010b) Superoxide decay kinetics in the southern ocean. Environ Sci Technol 44(1):191–196. doi:10.1021/Es901766r

    PubMed  CAS  Google Scholar 

  • Hessler DP, Frimmel FH, Oliveros E, Braun AM (1994) Solvent isotope effect on the rate constants of singlet-oxygen quenching by EDTA and its metal-complexes. Helv Chim Acta 77(3):859–868

    CAS  Google Scholar 

  • Hideg E, Spetea C, Vass I (1994a) Singlet oxygen and free-radical production during acceptor-induced and donor-side-induced photoinhibition—studies with spin-trapping EPR spectroscopy. BBA Bioenerg 1186(3):143–152

    CAS  Google Scholar 

  • Hideg E, Spetea C, Vass I (1994b) Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy. Photosynth Res 39(2):191–199

    CAS  Google Scholar 

  • Hochanadel CJ (1952) Effects of cobalt gamma-radiation on water and aqueous solutions. J Phys Chem 56(5):587–594

    CAS  Google Scholar 

  • Hoigne J (1975) Aqueous radiation chemistry in relation to waste treatment. In: Radiation for a clean environment. International Atomic Energy Agency, Vienna, pp 219–232

  • Hoigne J (1997) Inter-calibration of OH radical sources and water quality parameters. Water Sci Technol 35(4):1–8

    CAS  Google Scholar 

  • Holm TR, George GK et al (1987) Fluorometric determination of hydrogen peroxide in groundwater. Anal Chem 59:582–586

    CAS  Google Scholar 

  • Hosaka S, Obuki M, Nakajima J, Suzuki M (2005) Comparative study of antioxidants as quenchers or scavengers of reactive oxygen species based on quenching of MCLA-dependent chemiluminescence. Luminescence 20(6):419–427. doi:10.1002/Bio.867

    PubMed  CAS  Google Scholar 

  • Huang J, Mabury S (2000) Steady state reactions of carbonate radicals in field waters. Environ Chem Toxicol 19(9):2181–2188

    CAS  Google Scholar 

  • Huie RE, Clifton CL, Neta P (1991) Electron-transfer reaction-rates and equilibria of the carbonate and sulfate radical-anions. Radiat Phys Chem 38(5):477–481

    CAS  Google Scholar 

  • Hurst JR, Mcdonald JD, Schuster GB (1982) Lifetime of singlet oxygen in solution directly determined by laser spectroscopy. J Am Chem Soc 104(7):2065–2067

    CAS  Google Scholar 

  • Hwang H, Dasgupta PK (1985) Fluorimetric determination of trace hydrogen-peroxide in water with a flow-injection system. Anal Chim Acta 170:347–352

    CAS  Google Scholar 

  • Hwang H, Dasgupta PK (1986) Fluorometric flow injection determination of aqueous peroxides at nanomolar level using membrane reactors. Anal Chem 58(7):1521–1524

    CAS  Google Scholar 

  • Jankowski JJ, Kieber DJ, Mopper K (1999) Nitrate and nitrite ultraviolet actinometers. Photochem Photobiol 70(3):319–328

    CAS  Google Scholar 

  • Jankowski JJ, Kieber DJ, Mopper K, Neale PJ (2000) Development and intercalibration of ultraviolet solar actinometers. Photochem Photobiol 71(4):431–440

    PubMed  CAS  Google Scholar 

  • Jans U, Hoigné J (1998) Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals. Ozone Sci Eng J Int Ozone Assoc 20(1):67–90

    CAS  Google Scholar 

  • Janzen EG, Wang YY, Shetty RV (1978) Spin trapping with alpha-pyridyl 1-oxide N-tert-butyl nitrones in aqueous-solutions—unique electron-spin resonance-spectrum for hydroxyl radical adduct. J Am Chem Soc 100(9):2923–2925

    CAS  Google Scholar 

  • Janzen EG, Hinton RD, Kotake Y (1992a) Substituent effect on the stability of the hydroxyl radical adduct of alpha-phenyl N-tert-butyl nitrone (PBN). Tetrahedron Lett 33(10):1257–1260

    CAS  Google Scholar 

  • Janzen EG, Kotake Y, Hinton RD (1992b) Stabilities of hydroxyl radical spin adducts of PBN-type spin traps. Free Radic Biol Med 12(2):169–173

    PubMed  CAS  Google Scholar 

  • Johnson RM, Siddiqi IW (1970) The determination of organic peroxides, vol 4. Monographs in organic functional group analysis. Pergamon Press, New York

  • Kambayashi Y, Ogino K (2003) Reestimation of Cypridina luciferin analogs (MCLA) as a chemiluminescence probe to detect active oxygen species: cautionary note for use of MCLA. J Toxicol Sci 28(3):139–148

    PubMed  CAS  Google Scholar 

  • Karoui H, Clement JL, Rockenbauer A, Siri D, Tordo P (2004) Synthesis and structure of 5,5-diethoxycarbonyl-l-pyrroline N-oxide (DECPO). Application to superoxide radical trapping. Tetrahedron Lett 45(1):149–152

    CAS  Google Scholar 

  • Kearns DR (1971) Physical and chemical properties of singlet molecular oxygen. Chem Rev 71(4):395–427

    CAS  Google Scholar 

  • Keston AS, Brandt R (1965) Fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11(1):1–5

    PubMed  CAS  Google Scholar 

  • Khan AU, Kasha M (1963) Red chemiluminescence of molecular oxygen in aqueous solution. J Chem Phys 39(8):2105–2106

    CAS  Google Scholar 

  • Khan AU, Pitts JN, Smith EB (1967) Singlet oxygen in the environmental sciences: the role of singlet molecular oxygen in the production of photochemical air pollution. Environ Sci Technol 1(8):656–657

    PubMed  CAS  Google Scholar 

  • Khramtsov VV, Reznikov VA, Berliner LJ, Litkin AK, Grigor’ev IA, Clanton TL (2001) NMR spin trapping: detection of free radical reactions with a new fluorinated DMPO analog. Free Radic Biol Med 30(10):1099–1107. doi:10.1016/s0891-5849(01)00505-6

    PubMed  CAS  Google Scholar 

  • Kieber RJ, Helz GR (1986) Two-method verification of hydrogen peroxide determinations in natural waters. Anal Chem 58:2312–2315

    CAS  Google Scholar 

  • Kieber DJ, Peake BM, Scully NM (2003) Reactive oxygen species in aquatic systems. In: Hebling EW, Zagrese H (eds) UV effects in aquatic organisms and ecosystems. Royal Society of Chemistry, Cambridge, pp 251–288

    Google Scholar 

  • King DW, Cooper WJ, Rusak SA, Peake BM, Kiddle JJ, O’Sullivan DW, Melamed ML, Morgan CR, Theberge SM (2007) Flow injection analysis of H2O2 in natural waters using acridinium ester chemiluminescence: method development and optimization using a kinetic model. Anal Chem 79(11):4169–4176

    PubMed  CAS  Google Scholar 

  • Kishore K, Moorthy PN, Rao KN (1982) Riboflavin as a new versatile solute for the determination of OH radical rate constants by the competition kinetic technique. Radiat Phys chem 20(4):241–245

    CAS  Google Scholar 

  • Klaning UK, Sehested K, Holcman J (1985) Standard gibbs energy of formation of the hydroxyl radical in aqueous-solution—rate constants for the reaction ClO2− and O3 reversible O3 and ClO2. J Phys Chem 89(5):760–763

    CAS  Google Scholar 

  • Klauschenz E, Haseloff RF, Volodarskii LB, Blasig IE (1994) Spin-trapping using 2,2-dimethyl-2H-imidazole-1-oxides. Free Radic Res 20(2):103–111

    PubMed  CAS  Google Scholar 

  • Klein GW, Bhatia K, Madhavan V, Schuler RH (1975) Reaction of OH with benzoic acid—isomer distribution in radical intermediates. J Phys Chem 79(17):1767–1774

    CAS  Google Scholar 

  • Kok GL (1980) Measurements of hydrogen-peroxide in rainwater. Atmos Environ 14(6):653–656

    CAS  Google Scholar 

  • Kok GL, Holler TP, Lopez MB, Nachtrieb HA, Yuan M (1978) Chemiluminescent method for determination of hydrogen-peroxide in ambient atmosphere. Environ Sci Technol 12(9):1072–1076

    CAS  Google Scholar 

  • Kok GL, Thompson K, Lazrus AL, Mclaren SE (1986) Derivatization technique for the determination of peroxides in precipitation. Anal Chem 58(6):1192–1194

    CAS  Google Scholar 

  • Koppenol WH (1976) Reactions involving singlet oxygen and superoxide anion. Nature 262(5567):420–421

    PubMed  CAS  Google Scholar 

  • Koppenol WH, Butler J (1985) Energetics of interconversion reactions of oxyradicals. Adv Free Radic Biol Med 1:91–131

    CAS  Google Scholar 

  • Koppenol WH, Liebman JF (1984) The oxidizing nature of the hydroxyl radical—a comparison with the ferryl ion (FeO2+). J Phys Chem 88(1):99–101

    CAS  Google Scholar 

  • Koppenol WH, Vanbuuren KJH, Butler J, Braams R (1976) Kinetics of reduction of cytochrome-C by superoxide anion radical. Biochim Biophys Acta 449(2):157–168

    PubMed  CAS  Google Scholar 

  • Kosaka H, Katsuki Y, Shiga T (1992) Spin trapping study on the kinetics of Fe2+ autoxidation: formation of spin adducts and their destruction by superoxide. Arch Biochem Biophys 293(2):401–408. doi:10.1016/0003-9861(92)90412-p

    PubMed  CAS  Google Scholar 

  • Kosaka K, Yamada H, Matsui S, Echigo S, Shishida K (1998) Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: application of a spectrophotometric method using copper(II) ion and 2,9 dimethyl-1,10-phenanthroline. Environ Sci Technol 32(23):3821–3824

    CAS  Google Scholar 

  • Kotake Y, Janzen EG (1991) Decay and fate of the hydroxyl radical adduct of alpha-phenyl-N-tert-butylnitrone in aqueous-media. J Am Chem Soc 113(25):9503–9506

    CAS  Google Scholar 

  • Kraljic I, Mohsni SE (1978) New method for detection of singlet oxygen in aqueous-solutions. Photochem Photobiol 28(4–5):577–581

    CAS  Google Scholar 

  • Kraljic I, Trumbore CN (1965) P-Nitrosodimethylaniline as an OH radical scavenger in radiation chemistry. J Am Chem Soc 87(12):2547–2550

    CAS  Google Scholar 

  • Kwan WP, Voelker BM (2002) Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ Sci Technol 36(7):1467–1476. doi:10.1021/es011109p

    PubMed  CAS  Google Scholar 

  • Larson RA, Marley KA (1999) Singlet oxygen in the environment. In: Boule P (ed) Handbook of environmental chemistry, vol 2(Pt. L). Springer, Berlin, pp 123–137

  • Larson RA, Zepp RG (1988) Reactivity of the carbonate radical with aniline derivatives. Environ Toxicol Chem 7(4):265–274

    CAS  Google Scholar 

  • Latch E, McNeill K (2006) Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions. Science 311:1743–1747

    PubMed  CAS  Google Scholar 

  • Latch DE, Stender BL, Packer JL, Arnold WA, McNeill K (2003) Photochemical fate of pharmaceuticals in the environment: cimetidine and ranitidine. Environ Sci Technol 37(15):3342–3350. doi:10.1021/Es0340782

    PubMed  CAS  Google Scholar 

  • Lawrence GD (1985) Ethylene formation from methionine and its analogs. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 157–163

    Google Scholar 

  • Lazrus AL, Kok GL, Gitlin SN, Lind JA, Mclaren SE (1985) Automated fluorometric method for hydrogen-peroxide in atmospheric precipitation. Anal Chem 57(4):917–922

    CAS  Google Scholar 

  • Lee M (1995) Hydrogen peroxide, methyl hydroperoxide, and formaldehyde in air impacted by biomass burning. University of Rhode Island, Kingston

    Google Scholar 

  • Li JC, Cheng SM (1965) Spectrophotometric determination of titanium with 4-(2-pyridyl azo) resorcinol-hydrogen peroxide. Sci Sin 14(1):144–145

    Google Scholar 

  • Li B, Gutierrez PL, Blough NV (1997) Trace determination of hydroxyl radical in biological systems. Anal Chem 69(21):4295–4302

    PubMed  CAS  Google Scholar 

  • Li Y, Zhu H, Kuppusamy P, Roubaud V, Zweier JL, Trush MA (1998) Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J Biol Chem 273(4):2015–2023

    PubMed  CAS  Google Scholar 

  • Li B, Gutierrez PL, Blough NV, Lester P (1999) Trace determination of hydroxyl radical using fluorescence detection. In: Methods of enzymology. Academic Press, London, pp 202–216

  • Li X, Zhang G, Ma H, Zhang D, Li J, Zhu D (2004) 4,5-Dimethylthio-4′-[2-(9-anthryloxy)ethylthio]tetrathiafulvalene, a highly selective and sensitive chemiluminescence probe for singlet oxygen. J Am Chem Soc 126:11543–11548

    PubMed  CAS  Google Scholar 

  • Lin CL, Rohatgi NK, Demore WB (1978) Ultraviolet-absorption cross-sections of hydrogen-peroxide. Geophys Res Lett 5(2):113–115

    CAS  Google Scholar 

  • Lindig BA, Rodgers MAJ, Schaap AP (1980) Determination of the lifetime of singlet oxygen in D2O using 9,10-anthracenedipropionic acid, a water-soluble probe. J Am Chem Soc 102(17):5590–5593

    CAS  Google Scholar 

  • Lion Y, Delmelle M, Vandevorst A (1976) New method of detecting singlet oxygen production. Nature 263(5576):442–443

    PubMed  CAS  Google Scholar 

  • Lissi EA, Encinas MV, Lemp E, Rubio MA (1993) Singlet oxygen O2(1Δg) bimolecular processes. Solvent and compartmentalization effects. Chem Rev 93:699–723

    CAS  Google Scholar 

  • Loeff I, Swallow AJ (1964) On radiation chemistry of concentrated aqueous solutions of sodium benzoate. J Phys Chem 68(9):2470–2475

    CAS  Google Scholar 

  • Lu C, Song G, Lin JM (2006) Reactive oxygen species and their chemiluminescence-detection methods. Trac Trends Anal Chem 25(10):985–995. doi:10.1016/j.trac.2006.07.007

    CAS  Google Scholar 

  • Lymar SV, Schwarz HA, Czapski G (2000) Medium effects on reactions of the carbonate radical with thiocyanate, iodide, and ferrocyanide ions. Radiat Phys chem 59(4):387–392

    CAS  Google Scholar 

  • MacManus-Spencer LA, McNeill K (2005) Quantification of singlet oxygen production in the reaction of superoxide with hydrogen peroxide using a selective chemiluminescent probe. J Am Chem Soc 127(25):8954–8955

    PubMed  CAS  Google Scholar 

  • MacManus-Spencer LA, Latch DE, Kroncke KM, McNeill K (2005) Stable dioxetane precursors as selective trap-and-trigger chemiluminescent probes for singlet oxygen. Anal Chem 77:1200–1205

    PubMed  CAS  Google Scholar 

  • MacManus-Spencer LA, Edhlund BL, McNeill K (2006) Singlet oxygen production in the reaction of superoxide with organic peroxides. J Org Chem 71:796–799

    PubMed  CAS  Google Scholar 

  • Macpherson AN, Telfer A, Barber J, Truscott TG (1993) Direct-detection of singlet oxygen from isolated photosystem-II reaction centers. Biochim Biophys Acta 1143(3):301–309

    CAS  Google Scholar 

  • Madsen BC, Kromis MS (1984) Flow-injection and photometric-determination of hydrogen-peroxide in rainwater with N-ethyl-N-(sulfopropyl)aniline sodium-salt. Anal Chem 56(14):2849–2850

    CAS  Google Scholar 

  • Mak AM, Whiteman M, Wong MW (2007) Reaction of the radical pair NO2 and CO ·−3 with 2-[6-(4′-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF). J Phys Chem A 111(33):8202–8210

    PubMed  CAS  Google Scholar 

  • Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous-solutions—formation of hydroxyl radicals and hydrogen-atoms. J Phys Chem 87(8):1369–1377

    CAS  Google Scholar 

  • Malavolti NL, Pilosof D, Nieman TA (1984) Optimization of experimental-variables for the chemi-luminescent determination of glucose in microporous membrane flow cells. Anal Chem 56(12):2191–2195

    PubMed  CAS  Google Scholar 

  • Malehorn CL, Riehl TE, Hinze WL (1986) Improved determination of hydrogen-peroxide or lucigenin by measurement of lucigenin chemiluminescence in organized assemblies. Analyst 111(8):941–947

    CAS  Google Scholar 

  • Mashiko S, Suzuki N, Koga S, Nakano M, Goto T, Ashino T, Mizumoto I, Inaba H (1991) Measurement of rate constants for quenching singlet oxygen with a Cypridina luciferin analog (2-methyl-6-[para-methoxyphenyl]-3,7-dihydroimidazo[1,2-a]pyrazin-3-one) and sodium-azide. J Biolumin Chemilumin 6(2):69–72

    PubMed  CAS  Google Scholar 

  • Maskiewicz R, Sogah D, Bruice TC (1979) Chemiluminescent reactions of lucigenin. 1. Reactions of lucigenin with hydrogen-peroxide. J Am Chem Soc 101(18):5347–5354

    CAS  Google Scholar 

  • Maskos Z, Rush JD, Koppenol WH (1990) The hydroxylation of the salicylate anion by a fenton reaction and [Gamma]-radiolysis: a consideration of the respective mechanisms. Free Radic Biol Med 8(2):153–162

    PubMed  CAS  Google Scholar 

  • Matheson MS, Mulac WA, Weeks JL, Rabani J (1966) Pulse radiolysis of deaerated aqueous bromide solutions. J Phys Chem 70(7):2092–2099

    CAS  Google Scholar 

  • Matheson IB, Lee J, Yamanash Bs, Wolbarsh Ml (1974) Measurement of absolute rate constants for singlet molecular oxygen(1ΔG) reaction with 1,3-diphenylisobenzofuran and physical quenching by ground-state molecular-oxygen. J Am Chem Soc 96(11):3343–3348

    CAS  Google Scholar 

  • Matsubara C, Iwamoto T, Nishikawa Y, Takamura K, Yano S, Yoshikawa S (1985a) Colored species formed from the titanium(Iv)-4-(2′-pyridylazo)resorcinol reagent in the spectrophotometric determination of trace amounts of hydrogen-peroxide. J Chem Soc Dalton 1:81–84

    Google Scholar 

  • Matsubara C, Kudo K, Kawashita T, Takamura K (1985b) Spectrophotometric determination of hydrogen-peroxide with titanium 2-((5-bromopyridyl)azo)-5-(N-propyl-N-sulfopropylamino)phenol reagent and its application to the determination of serum glucose using glucose-oxidase. Anal Chem 57(6):1107–1109

    PubMed  CAS  Google Scholar 

  • Matthews RW, Sangster DF (1965) Measurement by benzoate radiolytic decarboxylation of relative rate constants for hydroxyl radical reactions. J Phys Chem 69(6):1938–1946

    CAS  Google Scholar 

  • Maurette MT, Oliveros E, Infelta PP, Ramsteiner K, Braun AM (1983) Singlet oxygen and superoxide—experimental differentiation and analysis. Helv Chim Acta 66(2):722–733

    CAS  Google Scholar 

  • Mayneord WV, Anderson W, Evans HD, Rosen D (1955) Hydrogen peroxide yields in X-irradiated aqueous solutions—a sensitive method based on hydrazide chemiluminescence. Radiat Res 3(4):379–392

    PubMed  CAS  Google Scholar 

  • Mccord JM, Fridovich I (1968) Reduction of cytochrome C by milk xanthine oxidase. J Biol Chem 243(21):5753–5760

    PubMed  CAS  Google Scholar 

  • Medinsky MA, Kenyon EM, Schlosser PM (1995) Benzene: a case study in parent chemical and metabolite interactions. Toxicology 105(2–3):225–233

    PubMed  CAS  Google Scholar 

  • Merkel PB, Kearns DR (1971) Direct measurement of the lifetime of singlet oxygen in solution. Chem Phys Lett 12(1):120–122

    CAS  Google Scholar 

  • Merkel PB, Kearns DR (1972a) Radiationless decay of singlet molecular oxygen in solution. An experimental and theoretical study of electronic-to-vibrational energy transfer. J Am Chem Soc 94(21):7244–7253

    CAS  Google Scholar 

  • Merkel PB, Kearns DR (1972b) Remarkable solvent effects on lifetime of 1ΔG oxygen1. J Am Chem Soc 94(3):1029–1030

    CAS  Google Scholar 

  • Merkel PB, Kearns DR (1975) Comment regarding the rate constant for the 1,3-diphenylisobenzofuran and singlet oxygen. J Am Chem Soc 97(2):462–463

    CAS  Google Scholar 

  • Merkel PB, Nilsson R, Kearns DR (1972) Deuterium effects on singlet oxygen lifetimes in solutions. A new test of singlet oxygen reactions. J Am Chem Soc 94(3):1030–1031

    CAS  Google Scholar 

  • Miller WL, Kester DR (1988) Hydrogen-peroxide measurement in seawater by (para-hydroxyphenyl)acetic acid dimerization. Anal Chem 60(24):2711–2715

    CAS  Google Scholar 

  • Miller GW, Morgan CA, Kieber DJ, King DW, Snow JA, Heikes BG, Mopper K, Kiddle JJ (2005) Hydrogen peroxide method intercomparision study in seawater. Mar Chem 97(1–2):4–13

    CAS  Google Scholar 

  • Miller CJ, Rose AL, Waite TD (2011) Phthalhydrazide chemiluminescence method for determination of hydroxyl radical production: modifications and adaptations for use in natural systems. Anal Chem 83(1):261–268. doi:10.1021/ac1022748

    PubMed  CAS  Google Scholar 

  • Mizuta Y, Masumizu T, Kohno M, Mori A, Packer L (1997) Kinetic analysis of the Fenton reaction by ESR-spin trapping. Biochem Mol Biol Int 43(5):1107–1120

    PubMed  CAS  Google Scholar 

  • Moffett JW, Zafiriou OC (1990) An investigation of hydrogen peroxide chemistry in surface waters of vineyard sound with H, 18O, and l8O2. Limnol Oceanogr 35(6):1221–1229

    CAS  Google Scholar 

  • Moffett JW, Zafiriou OC (1993) The photochemical decomposition of hydrogen-peroxide in surface waters of the eastern Caribbean and Orinoco River. J Geophys Res Ocean 98(C2):2307–2313

    CAS  Google Scholar 

  • Moffett JW, Zika RG (1987) Reaction-kinetics of hydrogen-peroxide with copper and iron in seawater. Environ Sci Technol 21(8):804–810

    PubMed  CAS  Google Scholar 

  • Moore JS, Phillips GO, Sosnowski A (1977) Reaction of carbonate radical-anion with substituted phenols. Int J Radiat Biol 31(6):603–605

    CAS  Google Scholar 

  • Moore CA, Farmer CT, Zika RG (1993) Influence of the Orinoco River on hydrogen-peroxide distribution and production in the eastern Caribbean. J Geophys Res Ocean 98(C2):2289–2298

    CAS  Google Scholar 

  • Morgan MS, Vantrieste PF, Garlick SM, Mahon MJ, Smith AL (1988) Ultraviolet molar absorptivities of aqueous hydrogen-peroxide and hydroperoxyl ion. Anal Chim Acta 215(1–2):325–329

    CAS  Google Scholar 

  • Motohashi N, Saito Y (1993) Competitive measurement of rate constants for hydroxyl radical reactions using radiolytic hydroxylation of benzoate. Chem Pharm Bull 41(10):1842–1845

    CAS  Google Scholar 

  • Mottola HA, Simpson BE, Gorin G (1970) Absorptiometric determination of hydrogen peroxide in submicrogram amounts with leuco crystal violet and peroxidase as catalyst. Anal Chem 42(3):410–411

    CAS  Google Scholar 

  • Muller K, Ziereis K (1993) Dimethyl 3,3′-(4-methyl-1,3-naphthylene)dipropionate as a singlet oxygen trap in biological-systems. Arch Pharm 326(6):369–371

    Google Scholar 

  • Nakano M (1990) Determination of superoxide radical and singlet oxygen based on chemiluminescence of luciferin analogs. Methods Enzymol 186:585–591

    PubMed  CAS  Google Scholar 

  • Nardello V, Azaroual N, Cervoise I, Vermeersch G, Aubry JM (1996) Synthesis and photooxidation of sodium 1,3-cyclohexadiene-1,4-diethanoate: a new colorless and water-soluble trap of singlet oxygen. Tetrahedron 52(6):2031–2046

    CAS  Google Scholar 

  • Nardello V, Brault D, Chavalle P, Aubry JM (1997) Measurement of photogenerated singlet oxygen (1O2(1Δg) in aqueous solution by specific chemical trapping with sodium 1,3-cyclohexadiene-1,4-diethanoate. J Photochem Photobiol B 39(2):146–155

    CAS  Google Scholar 

  • Neftel A, Jacob P, Klockow D (1984) Measurements of hydrogen-peroxide in polar ice samples. Nature 311(5981):43–45

    CAS  Google Scholar 

  • Nelsen SF, Buschek JM (1974) Charge delocalization in saturated systems—radical cation of 1,3,6,8-tetraazatricyclo[4.4.1.1-3,8]dodecane. J Am Chem Soc 96(20):6424–6428

    CAS  Google Scholar 

  • Niederlander HAG, Dejong MM, Gooijer C, Velthorst NH (1994a) Flow-injection system for determination of singlet oxygen quenching efficiencies utilizing online dioxetane chemiluminescence detection. Anal Chim Acta 290(1–2):201–214

    Google Scholar 

  • Niederlander HAG, Nuijens MJ, Dozy EM, Gooijer C, Velthorst NH (1994b) Dioxetane chemiluminescence detection in liquid-chromatography based on photosensitized online generation of singlet molecular-oxygen—a thorough examination of experimental parameters and application to polychlorinated-biphenyls. Anal Chim Acta 297(3):349–368

    Google Scholar 

  • Nonell S, Braslavsky SE (2000) Time-resolved singlet oxygen detection. Methods Enzymol 319:37–49

    PubMed  CAS  Google Scholar 

  • Ogilby PR, Foote CS (1982) Chemistry of singlet oxygen. 36. Singlet molecular-oxygen (1Δg) luminescence in solution following pulsed laser excitation—solvent deuterium-isotope effects on the lifetime of singlet oxygen. J Am Chem Soc 104(7):2069–2070

    CAS  Google Scholar 

  • Oh BS, Song SJ, Lee ET, Oh HJ, Kang JW (2004) Catalyzed ozonation process with GAC and metal doped-GAC for removing organic pollutants. Water Sci Technol 49(4):45–49

    PubMed  CAS  Google Scholar 

  • Ohyashiki T, Nunomura M, Katoh T (1999) Detection of superoxide anion radical in phospholipid liposomal membrane by fluorescence quenching method using 1,3-diphenylisobenzofuran. BBA Biomembr 1421(1):131–139

    CAS  Google Scholar 

  • Olive G, Mercier A, Le Moigne F, Rockenbauer A, Tordo P (2000) 2-Ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide: evaluation of the spin trapping properties. Free Radic Biol Med 28(3):403–408

    PubMed  CAS  Google Scholar 

  • Olojo RO, Xia RH, Abramson JJ (2005) Spectrophotometric and fluorometric assay of superoxide ion using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. Anal Biochem 339(2):338–344. doi:10.1016/J.Ab.2005.01.032

    PubMed  CAS  Google Scholar 

  • Osman AM, Laane C, Hilhorst R (2001) Enhanced sensitivity of Cypridina luciferin analogue (CLA) chemiluminescence for the detection of O·− (2)− with non-ionic detergents. Luminescence 16(1):45–50

    PubMed  CAS  Google Scholar 

  • Oturan MA, Pinson J (1995) Hydroxylation by electrochemically generated oh radicals—monohydroxylation and polyhydroxylation of benzoic-acid—products and isomers distribution. J Phys Chem 99(38):13948–13954

    CAS  Google Scholar 

  • Ouannes C, Wilson T (1968) Quenching of singlet oxygen by tertiary aliphatic amines. Effect of DABCO. J Am Chem Soc 90(23):6527–6528

    CAS  Google Scholar 

  • Page SE, Arnold WA, McNeill K (2010) Terephthalate as a probe for photochemically generated hydroxyl radical. J Environ Monit 12(9):1658–1665

    PubMed  CAS  Google Scholar 

  • Patsoukis N, Papapostolou I, Georgiou CD (2005) Interference of non-specific peroxidases in the fluorescence detection of superoxide radical by hydroethidine oxidation: a new assay for H2O2. Anal Bioanal Chem 381(5):1065–1072. doi:10.1007/s00216-004-2999-x

    PubMed  CAS  Google Scholar 

  • Peake BM, Mosley LM (2004) Hydrogen peroxide concentrations in relation to optical properties in a fiord (Doubtful Sound, New Zealand). N Z J Mar Fresh 38(4):729–741

    CAS  Google Scholar 

  • Perschke H, Boda E (1961) Determination of very small amounts of hydrogen peroxide. Nature 190(4772):257–258

    CAS  Google Scholar 

  • Petasne RG, Zika RG (1987) Fate of superoxide in coastal sea water. Nature 325(6104):516–518

    CAS  Google Scholar 

  • Petasne RG, Zika RG (1997) Hydrogen peroxide lifetimes in south Florida coastal and offshore waters. Mar Chem 56:215–225

    CAS  Google Scholar 

  • Petlicki J, van de Ven TGM (1998) The equilibrium between the oxidation of hydrogen peroxide by oxygen and the dismutation of peroxyl or superoxide radicals in aqueous solutions in contact with oxygen. J Chem Soc Faraday Trans 94(18):2763–2767

    CAS  Google Scholar 

  • Pi YZ, Schumacher J, Jekel M (2005) The use of para-chlorobenzoic acid (pCBA) as an ozone/hydroxyl radical probe compound. Ozone Sci Eng 27(6):431–436. doi:10.1080/01919510500349309

    CAS  Google Scholar 

  • Pines DS, Reckhow DA (2002) Effect of dissolved cobalt(II) on the ozonation of oxalic acid. Environ Sci Technol 36(19):4046–4051. doi:10.1021/Es011230w

    PubMed  CAS  Google Scholar 

  • Pines DS, Reckhow DA (2003) Solid phase catalytic ozonation process for the destruction of a model pollutant. Ozone Sci Eng 25(1):25–39

    CAS  Google Scholar 

  • Pogue BW, Paulsen KD, O’Hara JA, Hoopes PJDVM, Swartz H (2000) Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry. In: Proceedings of SPIE-the International Society for Optical Engineering, vol 3909, pp 104–112

  • Posner GH, Lever JR, Miura K, Lisek C, Seliger HH, Thompson A (1984) A chemi-luminescent probe specific for singlet oxygen. Biochem Biophys Res Commun 123(2):869–873

    PubMed  CAS  Google Scholar 

  • Pou S, Huang YI, Bhan A, Bhadti VS, Hosmane RS, Wu SY, Cao GL, Rosen GM (1993) A fluorophore-containing nitroxide as a probe to detect superoxide and hydroxyl radical generated by stimulated neutrophils. Anal Biochem 212(1):85–90

    PubMed  CAS  Google Scholar 

  • Pou S, Ramos CL, Gladwell T, Renks E, Centra M, Young D, Cohen MS, Rosen GM (1994) A kinetic approach to the selection of a sensitive spin-trapping system for the detection of hydroxyl radical. Anal Biochem 217(1):76–83

    PubMed  CAS  Google Scholar 

  • Qian J, Mopper K, Kieber DJ (2001) Photochemical production of the hydroxyl radical in Antarctic waters. Deep Sea Res Part I Oceanogr Res Pap 48(3):741–759

    CAS  Google Scholar 

  • Racine P, Auffray B (2005) Quenching of singlet molecular oxygen by Commiphora myrrha extracts and menthofuran. Fitoterapia 76(3–4):316–323

    PubMed  CAS  Google Scholar 

  • Reitberger T, Gierer J (1988) Chemiluminescence as a means to study the role of hydroxyl radicals in oxidative processes. Holzforschung 42(6):351–356

    CAS  Google Scholar 

  • Richard C, Canonica S (2005) Aquatic phototransformation of organic contaminants induced by coloured dissolved natural organic matter. In: Handbook of environmental chemistry, vol 2 (Pt. M). Springer, Berlin, pp 299–323

  • Rizzi C, Marque S, Belin F, Bouteiller JC, Lauricella R, Tuccio B, Cerri V, Tordo P (1997) PPN-type nitrones: preparation and use of a new series of beta-phosphorylated spin-trapping agents. J Chem Soc Perkin Trans 2(12):2513–2518

    Google Scholar 

  • Rodgers MAJ, Snowden PT (1982) Lifetime of O2(1ΔG) in liquid water as determined by time-resolved infrared luminescence measurements. J Am Chem Soc 104(20):5541–5543

    CAS  Google Scholar 

  • Rose AL, Waite TD (2001) Chemiluminescence of luminol in the presence of iron(II) and oxygen: oxidation mechanism and implications for its analytical use. Anal Chem 73(24):5909–5920. doi:10.1021/Ac015547q

    PubMed  CAS  Google Scholar 

  • Rose AL, Moffet JW, Waite TD (2008a) Determination of superoxide in seawater using 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3(7H)-one chemiluminescence. Anal Chem 80(4):1215–1227

    PubMed  CAS  Google Scholar 

  • Rose AL, Webb EA, Waite TD, Moffett JW (2008b) Measurement and implications of nonphotochemically generated superoxide in the equatorial Pacific Ocean. Environ Sci Technol 42(7):2387–2393

    PubMed  CAS  Google Scholar 

  • Rose AL, Godrant A, Furnas M, Waite TD (2010) Dynamics of superoxide production in the Great Barrier Reef lagoon. Limnol Oceanogr 55(4):1521–1536

    CAS  Google Scholar 

  • Rosen GM, Tsai P, Barth ED, Dorey G, Casara P, Spedding M, Halpern HJ (2000) A one-step synthesis of 2-(2-pyridyl)-3H-indol-3-one N-oxide: is it an efficient spin trap for hydroxyl radical? J Org Chem 65(14):4460–4463

    PubMed  CAS  Google Scholar 

  • Roubaud V, Lauricella R, Tuccio B, Bouteiller JC, Tordo P (1996) Decay of superoxide spin adducts of new PBN-type phosphorylated nitrones. Res Chem Intermediat 22(4):405–416

    CAS  Google Scholar 

  • Roubaud V, Lauricella R, Bouteiller JC, Tuccio B (2002) N-2-(2-ethoxycarbonyl-propyl) alpha-phenylnitrone: an efficacious lipophilic spin trap for superoxide detection. Arch Biochem Biophys 397(1):51–56

    PubMed  CAS  Google Scholar 

  • Rubio MA, Martire DO, Braslavsky SE, Lissi EA (1992) Influence of the ionic-strength on O2(1Δg) quenching by azide. J Photochem Photobiol A 66(2):153–157

    CAS  Google Scholar 

  • Rusak SA, Peake BM, Richard LE, Nodder SD, Cooper WJ (2011) Distributions of hydrogen peroxide and superoxide in seawater east of New Zealand. Mar Chem 127(1–4):155–169

    Google Scholar 

  • Rush JD, Bielski BHJ (1985) Pulse radiolytic studies of the reactions of HO2/O2 with Fe(II)/Fe(III) ions—the reactivity of HO2/O2 with ferric ions and its implication on the occurrence of the Haber–Weiss reaction. J Phys Chem 89(23):5062–5066

    CAS  Google Scholar 

  • Saito I, Inoue K, Matsuura T (1975) Occurrence of singlet-oxygen mechanism in photodynamic oxidations of guanosine. Photochem Photobiol 21(1):27–30

    PubMed  CAS  Google Scholar 

  • Samuni A, Black CD, Krishna CM, Malech HL, Bernstein EF, Russo A (1988) Hydroxyl radical production by stimulated neutrophils reappraised. J Biol Chem 263(27):13797–13801

    PubMed  CAS  Google Scholar 

  • Saragosti E, Tchernov D, Kastir A, Shaked Y (2010) Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium. PLoS ONE 5(9):e12508

    PubMed  Google Scholar 

  • Saran M, Summer KH (1999) Assaying for hydroxyl radicals: hydroxylated terephthalate is a superior fluorescence marker than hydroxylated benzoate. Free Radic Res 31(5):429–436. doi:10.1080/10715769900300991

    PubMed  CAS  Google Scholar 

  • Schmidt R (2006) Photosensitized generation of singlet oxygen. Photochem Photobiol 82(5):1161–1177

    PubMed  CAS  Google Scholar 

  • Schuler RH, Patterson LK, Janata E (1980) Yield for the scavenging of OH radicals in the radiolysis of N2O-saturated aqueous-solutions. J Phys Chem 84(16):2088–2089

    CAS  Google Scholar 

  • Schuler RH, Hartzell AL, Behar B (1981) Track effects in radiation-chemistry—concentration-dependence for the scavenging of OH by ferrocyanide in N2O-saturated aqueous-solutions. J Phys Chem 85(2):192–199

    CAS  Google Scholar 

  • Schwarz HA, Dodson RW (1984) Equilibrium between hydroxyl radicals and thallium(Ii) and the oxidation potential of OH(Aq). J Phys Chem 88(16):3643–3647

    CAS  Google Scholar 

  • Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103(5):1685–1757

    PubMed  CAS  Google Scholar 

  • Scully NM, Tranvik LJ, Cooper WJ (2003) Photochemical effects on the interaction of enzymes and dissolved organic matter in natural waters. Limnol Oceanogr 48(5):1818–1824

    CAS  Google Scholar 

  • Scurlock RD, Ogilby PR (1996) Quenching of O2 (a1Δg) by O2 (a1Δg) in solution. J Phys Chem 100(43):17226–17231

    CAS  Google Scholar 

  • Shaked Y, Harris R, Klein-Kedem N (2010) Hydrogen peroxide photocycling in the Gulf of Aqaba, Red Sea. Environ Sci Technol 44(9):3238–3244. doi:10.1021/Es902343y

    PubMed  CAS  Google Scholar 

  • Shao C, Cooper WJ, Lean DRS (1994) Singlet oxygen formation in lake waters from mid-latitudes. In: Helz GR, Zepp RG, Crosby DG (eds) Aquatic and surface photochemistry. Lewis, Boca Raton, pp 215–221

    Google Scholar 

  • Shimomura O, Wu C, Murai A, Nakamura H (1998) Evaluation of five imidazopyrazinone-type chemiluminescent superoxide probes and their application to the measurement of superoxide anion generated by Listeria monocytogenes. Anal Biochem 258(2):230–235

    PubMed  CAS  Google Scholar 

  • Smith GF, Mccurdy WH (1952) 2,9-Dimethyl-1,10-phenanthroline—new specific in spectrophotometric determination of copper. Anal Chem 24(2):371–373

    CAS  Google Scholar 

  • Snyrychova I, Hideg E (2007) The first application of terephthalate fluorescence for highly selective detection of hydroxyl radicals in thylakoid membranes. Funct Plant Biol 34(12):1105–1111. doi:10.1071/Fp07150

    Google Scholar 

  • Soh N (2006) Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal Bioanal Chem 386(3):532–543

    PubMed  CAS  Google Scholar 

  • Song B, Wang GL, Tan MQ, Yuan JL (2006) A europium(III) complex as an efficient singlet oxygen luminescence probe. J Am Chem Soc 128(41):13442–13450

    PubMed  CAS  Google Scholar 

  • Southworth BA, Voelker BM (2003) Hydroxyl radical production via the photo-Fenton reaction in the presence of fulvic acid. Environ Sci Technol 37(6):1130–1136. doi:10.1021/Es020757l

    PubMed  CAS  Google Scholar 

  • Stolze K, Udilova N, Nohl H (2002) Spin adducts of superoxide, alkoxyl, and lipid-derived radicals with EMPO and its derivatives. Biol Chem 383(5):813–820

    PubMed  CAS  Google Scholar 

  • Stolze K, Udilova N, Rosenau T, Hofinger A, Nohl H (2003) Synthesis and characterization of EMPO-derived 5,5-disubstituted 1-pyrroline N-oxides as spin traps forming exceptionally stable superoxide spin adducts. Biol Chem 384(3):493–500

    PubMed  CAS  Google Scholar 

  • Stolze K, Udilova N, Rosenau T, Hofinger A, Nohl H (2004) Spin adducts of several N-2-(2-alkoxycarbonyl-propyl)-alpha-pyridylnitrone derivatives with superoxide, alkyl and lipid-derived radicals. Biochem Pharmacol 68(1):185–193

    PubMed  CAS  Google Scholar 

  • Stolze K, Udilova N, Rosenau T, Hofinger A, Nohl H (2005) Spin adduct formation from lipophilic EMPO-derived spin traps with various oxygen- and carbon-centered radicals. Biochem Pharmacol 69(2):297–305

    PubMed  CAS  Google Scholar 

  • Sugioka K, Nakano M, Kurashige S, Akuzawa Y, Goto T (1986) A chemiluminescent probe with a Cypridina luciferin analog, 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-one, specific and sensitive for O-2-production in phagocytizing macrophages. FEBS Lett 197(1–2):27–30

    PubMed  CAS  Google Scholar 

  • Sulzberger B, Canonica S, Egli T, Giger W, Klausen J, von Gunten U (1997) Oxidative transformations of contaminants in natural and in technical systems. Chimia 51(12):900–907

    CAS  Google Scholar 

  • Sutton HC, Downes MT (1972) Reactions of HO2 radical in aqueous-solution with bromine and related compounds. J Chem Soc Faraday Trans 1 68(8):1498–1507

    CAS  Google Scholar 

  • Suzuki N, Mizumoto I, Toya Y, Nomoto T, Mashiko S, Inaba H (1990) Steady-state near-infrared detection of singlet molecular-oxygen—a Stern–Volmer quenching experiment with luminol, superoxide-dismutase, and Cypridina luciferin analogs. Agric Biol Chem Tokyo 54(11):2783–2787

    CAS  Google Scholar 

  • Szymczak R, Waite TD (1988) Generation and decay of hydrogen peroxide in estuarine waters. Mar Freshw Res 39:289–299

    CAS  Google Scholar 

  • Szymczak R, Waite TD (1991) Photochemical activity in waters of the Great Barrier Reef. Estuar Coast Shelf Sci 33:605–622

    CAS  Google Scholar 

  • Tamaoku K, Murao Y, Akiura K, Ohkura Y (1982) New water-soluble hydrogen donors for the enzymatic spectrophotometric determination of hydrogen-peroxide. Anal Chim Acta 136:121–127

    CAS  Google Scholar 

  • Tanaka K, Miura T, Umezaqa N, Urano Y, Kikuchi K, Higuchi T, Nagano T (2001) Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. J Am Chem Soc 123:2530–2536

    PubMed  CAS  Google Scholar 

  • Telfer A, Bishop SM, Phillips D, Barber J (1994) Isolated photosynthetic reaction-center of photosystem-II as a sensitizer for the formation of singlet oxygen—detection and quantum yield determination using a chemical trapping technique. J Biol Chem 269(18):13244–13253

    PubMed  CAS  Google Scholar 

  • Teranishi K (2007) Development of imidazopyrazinone red-chemiluminescent probes for detecting superoxide anions via a chemiluminescence resonance energy transfer method. Luminescence 22(2):147–156. doi:10.1002/Bio.939

    PubMed  CAS  Google Scholar 

  • Thomas JK, Rabani J, Matheson MS, Hart EJ, Gordon S (1966) Absorption spectrum of hydroxyl radical. J Phys Chem 70(7):2409–2410

    CAS  Google Scholar 

  • Thompson AM, Zafiriou OC (1983) Air-sea fluxes of transient atmospheric species. J Geophys Res Ocean Atmos 88(Nc11):6696–6708

    CAS  Google Scholar 

  • Tuccio B, Lauricella R, Frejaville C, Bouteiller JC, Tordo P (1995) Decay of the hydroperoxyl spin adduct of 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide—an EPR kinetic-study. J Chem Soc Perkin Trans 2(2):295–298

    Google Scholar 

  • Tuccio B, Zeghdaoui A, Finet JP, Cerri V, Tordo P (1996) Use of new beta-phosphorylated nitrones for the spin trapping of free radicals. Res Chem Intermediat 22(4):393–404

    CAS  Google Scholar 

  • Umezawa N, Tanaka K, Urano Y, Kikuchi K, Higuchi T, Nagano T (1999) Novel fluorescent probes for singlet oxygen. Angew Chem Int Ed Engl 38(19):2899–2901

    PubMed  CAS  Google Scholar 

  • Vaughan PP, Blough NV (1998) Photochemical formation of hydroxyl radical by constituents of natural waters. Environ Sci Technol 32(19):2947–2953

    Google Scholar 

  • Villamena FA, Zweier JL (2002) Superoxide radical trapping and spin adduct decay of 5-tert-butoxycarbonyl-5-methyl-1-pyrroline N-oxide (BocMPO): kinetics and theoretical analysis. J Chem Soc Perkin Trans 2(7):1340–1344

    Google Scholar 

  • Villamena FA, Locigno EJ, Rockenbauer A, Hadad CM, Zweier JL (2006) Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 1. Carbon dioxide radical anion. J Phys Chem A 110(49):13253–13258. doi:10.1021/Jp064892m

    Google Scholar 

  • Villamena FA, Locigno EJ, Rockenbauer A, Hadad CM, Zweier JL (2007) Theoretical and experimental studies of the spin trapping of inorganic radicals by 5,5-dimethyl-1-pyrroline N-oxide (DMPO). 2. Carbonate radical anion. J Phys Chem A 111(2):384–391

    PubMed  CAS  Google Scholar 

  • Vione D, Falletti G, Maurino V, Minero C, Pelizzetti E, Malandrino M, Ajassa R, Olariu R-I, Arsene C (2006) Sources and sinks of hydroxyl radicals upon irradiation of natural water samples. Environ Sci Technol 40(12):3775–3781

    PubMed  CAS  Google Scholar 

  • Voelker BM, Sedlak DL, Zafiriou OC (2000) Chemistry of superoxide radical in seawater: reactions with organic Cu complexes. Environ Sci Technol 34(6):1036–1042

    CAS  Google Scholar 

  • von Sonntag C, Schuchmann H-P (1991) The elucidation of peroxyl radical reactions in aqueous solution with the help of radiation-chemical means. Angew Chem Int Ed Engl 38:1229–12536

    Google Scholar 

  • Waite TD, Sawyer DT, Zafiriou OC (1988) Panel 1: oceanic reactive chemical transients. Appl Geochem 3(1):9–17

    CAS  Google Scholar 

  • Warneck P, Wurzinger C (1988) Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution. J Phys Chem 92(22):6278–6283. doi:10.1021/j100333a022

    CAS  Google Scholar 

  • Wasserman HH, Scheffer JR, Cooper JL (1972) Singlet oxygen reactions with 9,10-diphenylanthracene peroxide. J Am Chem Soc 94(14):4991–4996

    CAS  Google Scholar 

  • Wasserman HH, Xia M, Wang J, Petersen AK, Jorgensen M, Power P, Parr J (2004) Singlet oxygen reactions of 3-methoxy-2-pyrrole carboxylic acid tert-butyl esters. A route to 5-substituted pyrrole precursors of prodigiosin and analogs. Tetrahedron 60:7419–7425

    CAS  Google Scholar 

  • Weeks JL, Rabani J (1966) Pulse radiolysis of deaerated aqueous carbonate solutions. I. Transient optical spectrum and mechanism. 2. pK for OH radicals. J Phys Chem 70(7):2100–2106

    CAS  Google Scholar 

  • Weissler A (1953) Sonochemistry—the production of chemical changes with sound waves. J Acoust Soc Am 25(4):651–657

    Google Scholar 

  • Westerhoff P, Aiken G, Amy G, Debroux J (1999) Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res 33(10):2265–2276

    CAS  Google Scholar 

  • Westerhoff P, Mezyk SP, Cooper WJ, Minakata D (2007) Electron pulse radiolysis determination of hydroxyl radical rate constants with Suwannee river fulvic acid and other dissolved organic matter isolates. Environ Sci Technol 41(13):4640–4646

    PubMed  CAS  Google Scholar 

  • Wick LY, McNeill K, Rojo M, Medilanski E, Gschwend PM (2000) Fate of benzene in a stratified lake receiving contaminated groundwater discharges from a superfund site. Environ Sci Technol 34(20):4354–4362. doi:10.1021/Es000908p

    CAS  Google Scholar 

  • Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution an expanded and revised compilation. J Phys Chem Ref Data 24(2):663–1021

    CAS  Google Scholar 

  • Williams DC, Huff GF, Seitz WR (1976) Evaluation of peroxyoxalate chemiluminescence for determination of enzyme generated peroxide. Anal Chem 48(7):1003–1006

    PubMed  CAS  Google Scholar 

  • Winston GW, Cederbaum AI (1985) Decarboxylation of 7-14C-benzoic acid. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 169–175

    Google Scholar 

  • Wolcott RG, Franks BS, Hannum DM, Hurst JK (1994) Bactericidal potency of hydroxyl radical in physiological environments. J Biol Chem 269(13):9721–9728

    PubMed  CAS  Google Scholar 

  • Wolff CJM, Halmans MTH, Vanderheijde HB (1981) The formation of singlet oxygen in surface waters. Chemosphere 10(1):59–62

    CAS  Google Scholar 

  • Wood PM (1974) The redox potential of the system oxygen-superoxide. Fed Eur Biochem Soc Lett 44:22–23

    CAS  Google Scholar 

  • Xiao CB, King DW, Palmer DA, Wesolowski DJ (2000) Study of enhancement effects in the chemiluminescence method for Cr(III) in the ng l−1 range. Anal Chim Acta 415(1–2):209–219

    CAS  Google Scholar 

  • Xiao CB, Palmer DA, Wesolowski DJ, Lovitz SB, King DW (2002) Carbon dioxide effects on luminol and 1,10-phenanthroline chemiluminescence. Anal Chem 74(9):2210–2216. doi:10.1021/Ac015714m

    PubMed  CAS  Google Scholar 

  • Yamaguchi S, Kishikawa N, Ohyama K, Ohba Y, Kohno M, Masuda T, Takadate A, Nakashima K, Kuroda N (2010) Evaluation of chemiluminescence reagents for selective detection of reactive oxygen species. Anal Chim Acta 665(1):74–78. doi:10.1016/j.aca.2010.03.025

    PubMed  CAS  Google Scholar 

  • Yang XF, Guo XQ (2001) Study of nitroxide-linked naphthalene as a fluorescence probe for hydroxyl radicals. Anal Chim Acta 434(2):169–177

    CAS  Google Scholar 

  • Yang X, Zhan M-J, Kong L-R, Wang L-S (2004) Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions. J Environ Sci (IOS Press) 16(4):687–689

    CAS  Google Scholar 

  • Yao CCD, Haag WR (1991) Rate constants for direct reactions of ozone with several drinking-water contaminants. Water Res 25(7):761–773

    CAS  Google Scholar 

  • Yoon JH, Jung J, Chung HH, Lee MJ (2002) EPR characterization of carbonate ion effect on TCE and PCE decomposition by gamma-rays. J Radioanal Nucl Chem 253(2):217–219

    CAS  Google Scholar 

  • Young RH, Brewer D, Keller RA (1973) Determination of rate constants of reaction and lifetimes of singlet oxygen in solution by a flash-photolysis technique. J Am Chem Soc 95(2):375–379

    CAS  Google Scholar 

  • Youngman RJ, Elstner EF (1985) Ethylene formation from methionine in the presence of pyridoxal phosphate. In: Greenwald RA (ed) CRC handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 165–168

    Google Scholar 

  • Yu F, Xu D, Lei R, Li N, Li K (2008) Free-radical scavenging capacity using the Fenton reaction with rhodamine B as the spectrophotometric indicator. J Agric Food Chem 56(3):730–735. doi:10.1021/Jf072383r

    PubMed  CAS  Google Scholar 

  • Yuan JC, Shiller AM (1999) Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Anal Chem 71(10):1975–1980

    CAS  Google Scholar 

  • Zafiriou OC (1974) Sources and reactions of OH and daughter radicals in seawater. J Geophys Res 79(30):4491–4497

    CAS  Google Scholar 

  • Zafiriou OC (1977) Marine organic photochemistry previewed. Mar Chem 5:497–522

    CAS  Google Scholar 

  • Zafiriou OC (1990) Chemistry of superoxide ion-radical (O2 ) in seawater. 1. pK asw* (HOO) and uncatalyzed dismutation kinetics studied by pulse-radiolysis. Mar Chem 30(1–3):31–43

    CAS  Google Scholar 

  • Zafiriou OC, True MB (1979a) Nitrate photolysis in seawater by sunlight. Mar Chem 8(1):33–42

    CAS  Google Scholar 

  • Zafiriou OC, True MB (1979b) Nitrite photolysis in seawater by sunlight. Mar Chem 8:9–32

    CAS  Google Scholar 

  • Zafiriou OC, Joussotdubien J, Zepp RG, Zika RG (1984) Photochemistry of natural-waters. Environ Sci Technol 18(12):A358–A371

    Google Scholar 

  • Zafiriou OC, Blough NV, Micinski E, Dister B, Kieber D, Moffett J (1990) Molecular probe systems for reactive transients in natural-waters. Mar Chem 30(1–3):45–70

    CAS  Google Scholar 

  • Zeghdaoui A, Tuccio B, Finet JP, Cerri V, Tordo P (1995) Beta-phosphorylated alpha-phenyl-N-tert-butylnitrone (PBN) analogs—a new series of spin traps for oxyl radicals. J Chem Soc Perkin Trans 2(12):2087–2089

    Google Scholar 

  • Zehavi D, Rabani J (1972a) The oxidation of aqueous bromide ions by hydroxyl radicals a pulse radiolytic investigation. J Phys Chem 76(3):312–319

    CAS  Google Scholar 

  • Zehavi D, Rabani J (1972b) Pulse radiolysis of aqueous ferro-ferricyanide system. 1. Reactions of OH, HO2, and O2 radicals. J Phys Chem 76(25):3703–3709

    CAS  Google Scholar 

  • Zepp RG, Wolfe NL, Baughman GL, Hollis RC (1977) Singlet oxygen in natural waters. Nature 267:421–423

    CAS  Google Scholar 

  • Zepp RG, Baughman GL, Schlotzhauer PF (1981) Comparison of photochemical behavior of various humic substances in water: II. Photosensitized oxygenations. Chemosphere 10:119–126

    CAS  Google Scholar 

  • Zepp RG, Hoigne J, Bader H (1987) Nitrate-induced photooxidation of trace organic-chemicals in water. Environ Sci Technol 21(5):443–450

    PubMed  CAS  Google Scholar 

  • Zepp RG, Skurlatov YI, Ritmiller LF (1988) Effects of aquatic humic substances on analysis for hydrogen-peroxide using peroxidase-catalyzed oxidations of triarylmethanes or para-hydroxyphenylacetic acid. Environ Technol Lett 9(4):287–298

    CAS  Google Scholar 

  • Zepp RG, Faust BC, Hoigne J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron (II) with hydrogen peroxide: the photo-fenton reaction. Environ Sci Technol 26(2):313–319

    CAS  Google Scholar 

  • Zhao HT, Joseph J, Zhang H, Karoui H, Kalyanaraman B (2001) Synthesis and biochemical applications of a solid cyclic nitrone spin trap: a relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radic Bio Med 31(5):599–606

    CAS  Google Scholar 

  • Zheng J, Springston SR, Weinstein-Lloyd J (2003) Quantitative analysis of hydroperoxyl radical using flow injection analysis with chemiluminescence detection. Anal Chem 75(17):4696–4700. doi:10.1021/Ac034429v

    PubMed  CAS  Google Scholar 

  • Zhou X, Mopper K (1990) Determination of photochemically produced hydroxyl radicals in seawater and freshwater. Mar Chem 30:71–88

    CAS  Google Scholar 

  • Zhou MJ, Diwu ZJ, PanchukVoloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253(2):162–168

    PubMed  CAS  Google Scholar 

  • Zika RG, Saltzman ES (1982) Interaction of ozone and hydrogen-peroxide in water—implications for analysis of H2O2 in air. Geophys Res Lett 9(3):231–234

    CAS  Google Scholar 

  • Zika R, Saltzman E, Chameides WL, Davis DD (1982) H2O2 levels in rainwater collected in south Florida and the Bahama islands. J Geophys Res Ocean Atmos 87(Nc7):5015–5017

    CAS  Google Scholar 

  • Zika RG, Moffett JW, Petasne RG, Cooper WJ, Saltzman ES (1985a) Spatial and temporal variations of hydrogen-peroxide in Gulf of Mexico waters. Geochim Cosmochim Acta 49(5):1173–1184

    CAS  Google Scholar 

  • Zika RG, Saltzman ES, Cooper WJ (1985b) Hydrogen-peroxide concentrations in the Peru upwelling area. Mar Chem 17(3):265–275

    CAS  Google Scholar 

  • Zuo Z, Cai Z, Katsumura Y, Chitose N, Muroya Y (1999) Reinvestigation of the acid-base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants. Radiat Phys Chem 55:15–23

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge valuable comments of the anonymous reviewers and the associate editor which significantly improved the manuscript. This work was supported in part by the US National Science Foundation, Grant no. OCE 0752473 and the College of Arts and Sciences at the University of South Carolina. This is publication 72 of the University of California Irvine, Urban Water Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justina M. Burns.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, J.M., Cooper, W.J., Ferry, J.L. et al. Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquat Sci 74, 683–734 (2012). https://doi.org/10.1007/s00027-012-0251-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-012-0251-x

Keywords

Navigation