Skip to main content
Log in

Accepted Elasticity in Local Arithmetic Congruence Monoids

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

For certain \({a,b \in \mathbb{N}}\), an Arithmetic Congruence Monoid M(a, b) is a multiplicatively closed subset of \({\mathbb{N}}\) given by \({\{x\in\mathbb{N}:x \equiv a \pmod{b}\} \cup\{1\}}\). An irreducible in this monoid is any element that cannot be factored into two elements, each greater than 1. Each monoid element (apart from 1) may be factored into irreducibles in at least one way. The elasticity of a monoid element (apart from 1) is the longest length of a factorization into irreducibles, divided by the shortest length of a factorization into irreducibles. The elasticity of the monoid is the supremum of the elasticities of the monoid elements. A monoid has accepted elasticity if there is some monoid element that has the same elasticity as the monoid. An Arithmetic Congruence Monoid is local if gcd(a, b) is a prime power (apart from 1). It has already been determined whether Arithmetic Congruence Monoids have accepted elasticity in the non-local case; we make make significant progress in the local case, i.e. for many values of a, b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson D.D., Anderson D.F., Chapman S.T., Smith W.W.: Rational elasticity of factorizations in Krull domains. Proc. Amer. Math. Soc 117(1), 37–43 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anderson DD, Preisser J.: Factorization in integral domains without identity. Results Math. 55(3-4), 249–264 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anderson, D.F.: Elasticity of factorizations in integral domains: a survey. In: Factorization in integral domains (Iowa City, IA, 1996), vol. 189 of Lecture Notes in Pure and Appl. Math., pp. 1–29. Dekker, New York (1997)

  4. Baginski, P., Chapman, S.T.: Arithmetic congruence monoids: a survey. In: Combinatorial and additive number theory: contributions from CANT 2011. Springer, forthcoming

  5. Baginski P., Chapman S.T., Crutchfield C., Grace Kennedy K., Wright M.: Elastic properties and prime elements. Results Math. 49(3-4), 187–200 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Baginski P., Chapman S.T., Schaeffer G.J.: On the delta set of a singular arithmetical congruence monoid. J. Théor. Nombres Bordeaux 20(1), 45–59 (2008

    Article  MATH  MathSciNet  Google Scholar 

  7. Banister M., Chaika J., Chapman S.T., Meyerson W.: On a result of James and Niven concerning unique factorization in congruence semigroups. Elem. Math. 62(2), 68–72 (2007)

    MATH  MathSciNet  Google Scholar 

  8. Banister M., Chaika J., Chapman S.T., Meyerson W.: On the arithmetic of arithmetical congruence monoids. Colloq. Math. 108(1), 105–118 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Banister M., Chaika J., Chapman S.T., Meyerson W.: A theorem on accepted elasticity in certain local arithmetical congruence monoids. Abh. Math. Semin. Univ. Hambg. 79(1), 79–86 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Banister, M., Chaika, J., Meyerson, W.: Technical report, Trinity University REU (2003)

  11. Chapman S.T., Steinberg D.: On the elasticity of generalized arithmetical congruence monoids. Results Math. 58(3–4), 221–231 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fontana, M., Houston, E., Lucas, T.: Factoring ideals in integral domains, volume~14 of Lecture Notes of the unione matematica Italiana. Springer, Heidelberg (2013)

  13. Geroldinger, A.: Additive group theory and non-unique factorizations. In: Combinatorial number theory and additive group theory, Adv. Courses Math. CRM Barcelona, pp. 1–86. Birkhäuser, Basel (2009)

  14. Geroldinger A., Halter-Koch F.: Congruence monoids. Acta Arith. 112(3), 263–296 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Geroldinger, A., Halter-Koch, F.: Non-unique factorizations, vol. 278 of Pure and Applied Mathematics (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL (2006) Algebraic, combinatorial and analytic theory

  16. Halter-Koch, F.: C-monoids and congruence monoids in Krull domains. In: Arithmetical properties of commutative rings and monoids, vol. 241 of Lect. Notes Pure Appl. Math., pp. 71–98. Chapman & Hall/CRC, Boca Raton, FL (2005)

  17. Hardy G.H.: Ramanujan: twelve lectures on subjects suggested by his life and work. Chelsea Publishing Company, New York (1959)

  18. Hungerford, T.W.: Algebra. Holt, Rinehart and Winston, Inc., New York (1974)

  19. Jenssen M., Montealegre D., Ponomarenko V.: Irreducible factorization lengths and the elasticity problem within \({\mathbb{N}}\). Amer. Math. Monthly 120(4), 322–328 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Niven, I., Zuckerman, H.S.: An introduction to the theory of numbers. John Wiley & Sons, New York-Chichester-Brisbane, fourth edition (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Ponomarenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, L., Ponomarenko, V., Steinberg, J. et al. Accepted Elasticity in Local Arithmetic Congruence Monoids. Results. Math. 66, 227–245 (2014). https://doi.org/10.1007/s00025-014-0374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-014-0374-6

Mathematics Subject Classification (2010)

Keywords

Navigation