Skip to main content
Log in

Joint Inversion for Earthquake Depths Using Local Waveforms and Amplitude Spectra of Rayleigh Waves

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Reliable earthquake depth is fundamental to many seismological problems. In this paper, we present a method to jointly invert for centroid depths with local (distance < 5°) seismic waveforms and regional (distance of 5°–15°) Rayleigh wave amplitude spectra on sparse networks. We use earthquake focal mechanisms and magnitudes retrieved with the Cut-and-Paste (CAP) method to compute synthetic amplitude spectra of fundamental mode Rayleigh wave for a range of depths. Then we grid search to find the optimal depth that minimizes the joint misfit of amplitude spectra and local waveforms. As case studies, we apply this method to the 2008 Wells, Nevada Mw6.0 earthquake and a Mw5.6 outer-rise earthquake to the east of Japan Trench in 2013. Uncertainties estimated with a bootstrap re-sampling approach show that this joint inversion approach constrains centroid depths well, which are also verified by independent teleseismic depth-phase data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bensen, G., Ritzwoller, M., Barmin, M., Levshin, A., Lin, F., Moschetti, M., et al. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239–1260.

    Article  Google Scholar 

  • Billings, S., Sambridge, M., & Kennett, B. (1994). Errors in hypocenter location: picking, model, and magnitude dependence. Bulletin of the Seismological Society of America, 84(6), 1978–1990.

    Google Scholar 

  • Chen, W. P., & Molnar, P. (1983). Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. Journal of Geophysical Research: Solid Earth (1978–2012), 88(B5), 4183–4214.

    Article  Google Scholar 

  • Chen, W., Ni, S., Kanamori, H., Wei, S., Jia, Z., & Zhu, L. (2015). CAPjoint, A computer software package for joint inversion of moderate earthquake source parameters with local and teleseismic waveforms. Seismological Research Letters, 86(2A), 432–441.

    Article  Google Scholar 

  • Chu, R., Wei, S., Helmberger, D. V., Zhan, Z., Zhu, L., & Kanamori, H. (2011). Initiation of the great M w 9.0 Tohoku-Oki earthquake. Earth and Planetary Science Letters, 308(3), 277–283.

    Article  Google Scholar 

  • Douglas, A., Hudson, J., & Kembhavi, V. (1971). The analysis of surface wave spectra using a reciprocity theorem for surface waves. Geophysical Journal International, 23(2), 207–223.

    Article  Google Scholar 

  • Dreger, D. S., Ford, S. R., & Ryder, I. (2011). Preliminary finite-source study of the February 21, 2008 Wells, Nevada earthquake. Nevada Bureau of Mines and Geology Special Publication, 36, 147–156.

    Google Scholar 

  • Engdahl, E. R., van der Hilst, R., & Buland, R. (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88(3), 722–743.

    Google Scholar 

  • Fox, B. D., Selby, N. D., Heyburn, R., & Woodhouse, J. H. (2012). Shallow seismic source parameter determination using intermediate-period surface wave amplitude spectra. Geophysical Journal International, 191(2), 601–615.

    Article  Google Scholar 

  • Haskell, N. A. (1953). The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43(1), 17–34.

    Google Scholar 

  • Herrmann, R., & Ammon, C. (2004). Surface waves, receiver functions and crustal structure. Computer Programs in Seismology Version, 3, 30.

    Google Scholar 

  • Herrmann, R., Benz, H., & Ammon, C. (2011). Monitoring the earthquake source process in North America. Bulletin of the Seismological Society of America, 101(6), 2609–2625.

    Article  Google Scholar 

  • Hino, R., Tanioka, Y., Kanazawa, T., Sakai, S., Nishino, M., & Suyehiro, K. (2001). Micro-tsunami from a local interplate earthquake detected by cabled offshore tsunami observation in northeastern Japan. Geophysical Research Letters, 28(18), 3533–3536.

    Article  Google Scholar 

  • Kennet, B. (1991). IASPEI 1991 seismological tables. Terra Nova, 3(2), 122.

    Article  Google Scholar 

  • Keranen, K. M., Savage, H. M., Abers, G. A., & Cochran, E. S. (2013). Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw5.7 earthquake sequence. Geology, 41(6), 699–702.

    Article  Google Scholar 

  • Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body waves—III. Bulletin of the Seismological Society of America, 81(6), 2335–2350.

    Google Scholar 

  • Kim, W. Y. (2013). Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. Journal of Geophysical Research: Solid Earth, 118(7), 3506–3518.

    Google Scholar 

  • Kind, R., & Seidl, D. (1982). Analysis of broadband seismograms from the Chile-eru area. Bulletin of the Seismological Society of America, 72(6A), 2131–2145.

    Google Scholar 

  • Laske, G., Masters, G., & Reif, C. (2001). CRUST2. 0: a new global crustal model at 2 × 2°, Institute of Geophysics and Planetary Physics, The University of California, San Diego. http://mahi.ucsd.edu/Gabi/rem.dir/crust/crust2.html. Accessed 11 Aug 2016.

  • Levshin, A., Ratnikova, L., & Berger, J. (1992). Peculiarities of surface-wave propagation across central Eurasia. Bulletin of the Seismological Society of America, 82(6), 2464–2493.

    Google Scholar 

  • Liu, Q., Polet, J., Komatitsch, D., & Tromp, J. (2004). Spectral-element moment tensor inversions for earthquakes in southern California. Bulletin of the Seismological Society of America, 94(5), 1748–1761.

    Article  Google Scholar 

  • Mori, J. (1991). Estimates of velocity structure and source depth using multiple P waves from aftershocks of the 1987 Elmore Ranch and Superstition Hills, California, earthquakes. Bulletin of the Seismological Society of America, 81(2), 508–523.

    Google Scholar 

  • Nguyen, B., & Herrmann, R. (1992). Determination of source parameters for central and eastern North American earthquakes (1982–1986). Seismological Research Letters, 63(4), 567–586.

    Google Scholar 

  • Nyblade, A. A., & Langston, C. A. (1995). East African earthquakes below 20 km depth and their implications for crustal structure. Geophysical Journal International, 121(1), 49–62.

    Article  Google Scholar 

  • Ranero, C. R., Morgan, J. P., McIntosh, K., & Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425(6956), 367–373.

    Article  Google Scholar 

  • Stein, S., & Wiens, D. A. (1986). Depth determination for shallow teleseismic earthquakes: methods and results. Reviews of Geophysics, 24(4), 806–832.

    Article  Google Scholar 

  • Tan, Y., Zhu, L., Helmberger, D. V., Saikia, C. K. (2006). Locating and modeling regional earthquakes with two stations. Journal of Geophysical Research, 111(B01306). doi:10.1029/2005JB003775.

  • Tanimoto, T., & Rivera, L. (2005). Prograde Rayleigh wave particle motion. Geophysical Journal International, 162(2), 399–405.

    Article  Google Scholar 

  • Tape, C., West, M., Silwal, V., & Ruppert, N. (2013). Earthquake nucleation and triggering on an optimally oriented fault. Earth and Planetary Science Letters, 363, 231–241.

    Article  Google Scholar 

  • Tichelaar, B. W., & Ruff, L. J. (1989). How good are our best models? Jackknifing, bootstrapping, and earthquake depth. Eos Transactions American Geophysical Union, 70(20), 593–606.

    Article  Google Scholar 

  • Tsai, Y. B., & Aki, K. (1970). Precise focal depth determination from amplitude spectra of surface waves. Journal of Geophysical Research, 75(29), 5729–5744.

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. (1998). New, improved version of generic mapping tools released. Eos, Transactions American Geophysical Union, 79(47), 579.

    Article  Google Scholar 

  • Zhan, Z., Helmberger, D., Simons, M., Kanamori, H., Wu, W., Cubas, N., et al. (2012). Anomalously steep dips of earthquakes in the 2011 Tohoku-Oki source region and possible explanations. Earth and Planetary Science Letters, 353, 121–133.

    Article  Google Scholar 

  • Zhao, L.-S., & Helmberger, D. V. (1994). Source estimation from broadband regional seismograms. Bulletin of the Seismological Society of America, 84(1), 91–104.

    Google Scholar 

  • Zhao, L., Chen, P., & Jordan, T. H. (2006). Strain Green’s tensors, reciprocity, and their applications to seismic source and structure studies. Bulletin of the Seismological Society of America, 96(5), 1753–1763.

    Article  Google Scholar 

  • Zhu, L., & Helmberger, D. V. (1996). Advancement in source estimation techniques using broadband regional seismograms. Bulletin of the Seismological Society of America, 86(5), 1634–1641.

    Google Scholar 

  • Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619–627.

    Article  Google Scholar 

  • Zhu, L., & Zhou, X. (2016). Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence, Physics and Chemistry of the Earth, Parts A/B/C. doi:10.1016/j.pce.2016.01.002.

  • Zhu, L., Tan, Y., Helmberger, D. V., & Saikia, C. K. (2006). Calibration of the Tibetan Plateau using regional seismic waveforms. Pure and Applied Geophysics, 163(7), 1193–1213.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Robert Herrmann and Charles Ammon for sharing their CPS (Computer Programs in Seismology) package; and Lupei Zhu for sharing his FK and CAP codes. We thank the reviewers and editor for their positive and constructive comments and suggestions. All figures are plotted with help of Generic Mapping Tools (GMT) code (Wessel and Smith 1998). Data used in this study were downloaded from the IRIS data management center and National Research Institute for Earth Science and Disaster Prevention (NIED) earthquake and volcano data center. Seismic networks used in this work are listed in Table 3. The study is supported by China MOST 973 program (2014CB845901) and NSFC (No. 41461164003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidao Ni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Ni, S., Chu, R. et al. Joint Inversion for Earthquake Depths Using Local Waveforms and Amplitude Spectra of Rayleigh Waves. Pure Appl. Geophys. 174, 261–277 (2017). https://doi.org/10.1007/s00024-016-1373-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1373-1

Keywords

Navigation