Skip to main content
Log in

Diagnosing Source Geometrical Complexity of Large Earthquakes

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We investigated the possible frequency dependence of the moment tensor of large earthquakes by performing W phase inversions using teleseismic data and equally-spaced narrow, overlapping frequency bands. We investigated frequencies from 0.6 to 3.8 mHz. Our focus was on the variation with frequency of the scalar moment, the amount of non-double-couple, and the focal mechanism. We applied this technique to 30 major events in the period 1994–2013 and used the results to detect source complexity. Based on the results, we classed them into three groups according to the variability of the source parameters with frequency: simple, complex and intermediate. Twelve of these events fell into the simple category: Bolivia-1994, Kuril-1994, Sanriku-1994, Antofagasta-1995, Andreanoff-1996, Peru-2001, Sumatra-2004, Sumatra-2005, Tonga-2006, Sumatra-2007, Japan-2011, and the recent Sea of Okhotsk-2013. Seven exhibited significant complexity: Balleny-1998, Sumatra-2000, Indian Ocean-2000, Macquarie Island-2004, Sichuan-2008, and Samoa-2009. The remaining 11 events showed a moderate degree of complexity. Here, we discuss the results of this study in light of independent observations of source complexity, made by various investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abercrombie, R., M. Antolik and G. Ekström, 2003, The June 2000 Mw 7.9 earthquakes south of Sumatra: Deformation in the India–Australia Plate, J. Geophys. Res. 108, B1, 2018, doi:10.1029/2001JB000674.

  • Aki, K. and P.G. Richards, 1980. Quantitative Seismology, 1st edition, W. H. Freeman and company, San Francisco, United States.

  • Barth, A., F. Wentzel and D. Giardini, 2007, Frequency sensitive moment tensor inversion for light to moderate magnitude earthquakes in eastern Africa, Geophys. Res. Lett., 34, L15302. doi:10.1029/2007GL030359.

  • Beavan, J., X. Wang, C. Holden, K. Wilson, W. Power, G. Prasetya, M. Bevis, R. Kautoke; 2010, Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009, Nature, 466, 7309; 959–963.

  • Chen, T., A. V. Newman, L. Feng, and H. M. Fritz, 2009, Slip distribution from the 1 April 2007 Solomon Islands earthquake: A unique image of near-trench rupture, Geophys. Res. Lett., 36, L16307, doi:10.1029/2009GL039496.

  • De Michele, M., D. Raucoules, J. De Sigoyer, M. Pubellier and N. Chamot-Rooke, 2010, Three-dimensional surface displacement of the 2008 May 12 Sichuan earthquake (China) derived from Synthetic Aperture Radar: evidence for rupture on a blind thrust, Geophys. J. Int. doi:10.1111/j.1365-246X.2010.04807.x.

  • Duputel, Z., L. Rivera, H. Kanamori, G.P. Hayes, B. Hirsorn and S. Weinstein, 2011. Real-time W Phase inversions during the 2011 Tohoku-oki earthquake, Earth, Planets and Space, 63, 7, 535–539.

  • Duputel, Z., L. Rivera, H. Kanamori, and G. P. Hayes. 2012a, W phase source inversion for moderate to large earthquakes. Geophys. J. Int., 189, 1125–1147, 2012.

  • Duputel, Z., H. Kanamori, V.C. Tsai, L. Rivera, L. Meng, J.-P. Ampuero and J. Stock, 2012b. The 2012 Sumatra great earthquake sequence, Earth Planet Sci. Lett., v. 351–352, p. 247–257.

  • Duputel, Z, V. C. Tsai, L. Rivera, and H. Kanamori, 2013. Using centroid time-delays to characterize source durations and identify earthquakes with unique characteristics, Earth Planet Sci. Lett., in press.

  • Dziewonski, A. M. and J. H. Woodhose, 1983, An experiment in systematic study of global seismicity: centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981. J. of Geophys. Res., 88, B4, 3247–3271.

  • Dziewonski, A. M., T.-A. Chou and J. H. Woodhouse, 1981, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825–2852. doi:10.1029/JB086iB04p02825.

  • Dziewonski, A.M., Franzen, J.E., Woodhouse, J.H., 1984. Centroid-moment tensor solutions for January–March 1984. Phys. Earth Planet. Int. 34, 209–219.

  • Ekström, G., M. Nettles, A.M. Dziewonski, 2012. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9.

  • Furlong, K., T. Lay and C. J. Ammon , 2009. A Great Earthquake Rupture Across a Rapidly Evolving Three-Plate Boundary. Science 10 April 2009: 226–229. doi:10.1126/science.1167476.

  • GCMT, 2013, Global CMT Project, www.globalcmt.org.

  • Gómez, J. M., R. Madariaga, A. Walpersdorf and e. Chalard, 2000, The 1996 Earthquake in Sulawesi, Indonesia. Bull. Seism. Soc. Am., 90(3), 739–751.

  • Hao, K. X., H. Si, H. Fujiwara, and T. Ozawa, 2009, Coseismic surface-ruptures and crustal deformations of the 2008 Wenchuan earthquake Mw7.9, China, Geophys. Res. Lett., 36, L11303, doi:10.1029/2009GL037971.

  • Hashimoto, M., M. Enomoto and Y. Fukushima., 2009; Coseismic Deformation from the 2008 Wenchuan, China, Earthquake Derived from ALOS/PALSAR Images, Tectonophysics, doi:10.1016/j.tecto.2009.08.034.

  • Hayes, G., L. Rivera, and H. Kanamori, 2009. Source Inversion of the W-Phase : Real-time Implementation and Extension to Low Magnitudes. Seismological Research Letters, 80(5), 817.

  • Heki, K., S. Miyazaki and H. Tsuji, S, 1997, Fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595–597, doi:10.1038/386595a0.

  • Heki, K. and Y. Tamura, 1997, Short term afterslip in the 1994 Sanriku-Haruka-oki earthquake, Geophys. Res. Lett., 24 (24), 3285–3288.

  • Henry, C., Das, S., Woodhouse, J.H., 2000. The great March 25, 1998, Antarctic Plate earthquake: moment tensor and rupture history. J. Geophys. Res. 105, 16097–16118.

  • Hjörleifsdóttir, V., H. Kanamori, and J. Tromp, 2009. Modeling 3-D wave propagation and finite slip for the 1998 Balleny Islands earthquake, J. Geophys. Res., 114, B03301, doi:10.1029/2008JB005975.

  • Jeffreys, H., 1931, Cartesian Tensors. Cambridge University Press. 93 pages., 1st edition, Cambridge, Great Britain.

  • Kagan, Y. Y., 1991. 3-D rotation of double-couple earthquake sources, Geophys. J. Int., 106(3), 709–716.

  • Kanamori, H., and J.W. Given, 1982, Use of long-period surface waves for rapid determination of earthquake source parameters. Preliminary determination of source mechanisms of large earthquakes (MS > = 6.5) in 1980. Phys. Earth Planet. Int., 30, 260–268.

  • Kanamori, H. and L. Rivera, 2008, Source inversion of W phase speeding up seismic tsunami warning. Geophys. J. Int., 175, 222–238.

    Google Scholar 

  • Kurahashi S. and K. Irikura, 2010, Characterized Source Model for Simulating Strong Ground Motions during the 2008 Wenchuan Earthquake, Bull. Seism. Soc. Am. 100, 2450–2475; doi:10.1785/0120090308.

  • Lambotte, S., L. Rivera, and J. Hinderer, 2006. Rupture length and duration of the 2004 Aceh-Sumatra earthquake from the phases of the Earth’s gravest free oscillations. Geophys. Res. Lett., 33, L03307, doi:10.1029/2005GL024090.

  • Lambotte, S., L. Rivera, and J. Hinderer, 2007, Constraining the Overall Kinematics of the 2004 Sumatra and the 2005 Nias Earthquakes Using the Earth’s Gravest Free Oscillations. Bull. Seism. Soc. Am., 97,1A, S128–S138, doi: 10.1785/0120050621.

  • Lay, T., C.J. Ammon, H. Kanamori, L. Rivera, K. D. Koper and A.R. Hutko, 2010a. The 2009 Samoa–Tonga great earthquake triggered doublet. Nature, doi:10.1038/466931a.

  • Lay, T., C. J. Ammon, A. R. Hutko, and H. Kanamori, 2010b. Effects of kinematic constraints on teleseismic finite-source rupture inversions: Great Peruvian earthquakes of 23 June 2001 and 15 August 2007, Bull. Seism. Soc. Am., 100, 969–994, doi:10.1785/0120090274.

  • Liu-Zeng, J., L. Wen, J. Sun, Z. Zhang, G. Hu, X. Xing, L. Zeng, and Q. Xu, 2010; Surficial Slip and Rupture Geometry on the Beichuan Fault near Hongkou during the M w  7.9 Wenchuan Earthquake, China, Bull. Seism. Soc. Am., 100, 2615–2650; doi:10.1785/0120090316.

  • Lundgren, P and D. Giardini, 1995, The June 9 Bolivia and March 9 Fidji deep earthquakes of 1994 : I. Source process. Geophys. Res. Lett., 22 (16), 2241–2244.

  • Miyazaki, S., P. Segall, J. Fukuda, and T. Kato, 2004. Space time distribution of afterslip following the 2003 Tokachi-oki earthquake: Implications for variations in fault zone frictional properties, Geophys. Res. Lett., 31, L06623, doi:10.1029/2003GL019410.

  • Okal, E.A., and S. Stein, 2009. Observations of ultra-long period normal modes from the 2004 Sumatra-Andaman earthquake, Phys. Earth Planet. Inter., 175, 53-62.

    Google Scholar 

  • Park, J., T. R. A. Song, J. Tromp, E. Okal, S. Stein, G. Roult, E. Clevede, G. Laske, H. Kanamori, P. Davis, J. Berger, C. Braitenberg, M. Van Camp, X. Lei, H. Sun, H. Xu, and S. Rosat, 2005. Earth’s free oscillations excited by the 26 December 2004 Sumatra-Andaman earthquake, Science 308, 1139–1144.

  • Pei, S., et al., 2009; Three-dimensional seismic velocity structure across the 2008 Wenchuan Ms 8.0 earthquake, Sichuan, China, Tectonophysics, doi:10.1016/j.tecto.2009.08.039.

  • Robinson, D.P, Das, S, Watts, AB, 2006. Earthquake rupture stalled by a subducting fracture zone, Science. 1203–1205 doi:10.1126/science.1125771.

  • Robinson, D.P., 2011. A rare great earthquake on an oceanic fossil fracture zone, Geophys. J. Int. 186, 1121–1134 doi:10.1111/j.1365-246X.2011.05092.x.

  • Sato K., T. Baba, T. Hori, M. Hyodo , and Y. Kaneda; 2010, Afterslip distribution following the 2003 Tokachi-oki earthquake: An estimation based on the Green’s functions for an inhomogeneous elastic space with subsurface structure; Earth Planets Space, 62 (12), 923–932, doi:10.5047/eps.2010.11.007.

  • Taylor, F., R. W. Briggs, C. Frohlich, A. Brown, M. Hornbach, A. K. Papabatu, A. J. Meltzner and D. Billy, 2008. Rupture across arc segment and plate boundaries in the 1 April 2007 Solomons earthquake. Nature Geoscience 1, 253–257.

  • Tsai, Victor C., M. Nettles, G. Ekström, and A. M. Dziewonski; 2005; Multiple CMT source analysis of the 2004 Sumatra earthquake; Geophys. Res. Lett., 32, 17; doi:10.1029/2005GL023813; L17304.

  • Vigny, C., A. Socquet, S. Peyrat, J.-C. Ruegg, M. Métois, R. Madariaga, S. Morvan, M. Lancieri, R. Lacassin, J. Campos, D. Carrizo, M. Bejar-Pizarro, S. Barrientos, R. Armijo, C. Aranda, M.-C. Valderas-Bermejo, I. Ortega, F. Bondoux, S. Baize, H. Lyon-Caen, A. Pavez, J. P. Vilotte, M. Bevis, B. Brooks, R. Smalley, H. Parra, J.-C. Baez, M. Blanco, S. Cimbaro, E. Kendrick , 2011, The 2010 M w 8.8 Maule Megathrust Earthquake of Central Chile, Monitored by GPS. Science, 332 (6036), 1417–1421, doi:10.1126/science.1204132.

  • WCMT, 2013. Wphase source inversion. http://wphase.unistra.fr.

Download references

Acknowledgments

This work uses seismic time series from the Federation of Digital Seismic Network (FDSN) retrieved through the Incorporated Research Institutions for Seismology (IRIS) Data Management System (DMS) and from Geoscope. We acknowledge two anonymous reviewers for their comments that helped to improve the original manuscript. L.R. was partially supported by the Caltech Seismological Laboratory and by the Tectonic Observatory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rivera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera, L., Kanamori, H. Diagnosing Source Geometrical Complexity of Large Earthquakes. Pure Appl. Geophys. 171, 2819–2840 (2014). https://doi.org/10.1007/s00024-013-0769-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-013-0769-4

Keywords

Navigation