, Volume 164, Issue 11, pp 2271-2290

Multifractal Analysis of Earthquakes in the Southeastern Iran-Bam Region

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Earthquakes in Iran and neighbouring regions are closely connected to their position within the geologically active Alpine-Himalayan belt. Modern tectonic activity is forced by the convergent movements between two plates: The Arabian plate, including Saudi Arabia, the Persian Gulf and the Zagros Ranges of Iran, and the Eurasian plate. The intensive seismic activity in this region is recorded with shallow focal depth and magnitude rising as high as Mw = 7.8. The study region can be attributed to a highly complex geodynamic process and therefore is well suited for multifractal seismicity analysis. Multifractal analysis of earthquakes (mb ≥ 3) occurring during 1973 – 2006 led to the detection of a clustering pattern in the narrow time span prior to all the large earthquakes: Mw = 7.8 on 16.9.1978; Mw = 6.8 on 26.12.2003; Mw = 7.7 on 10.5.97. Based on the spatio-temporal clustering pattern of events, the potential for future large events can be assessed. Spatio-temporal clustering of events apparently indicates a highly stressed region, an asperity or weak zone from which the rupture propagation eventually nucleates, causing large earthquakes. This clustering pattern analysis done on a well-constrained catalogue for most of the fault systems of known seismicity may eventually aid in the preparedness and earthquake disaster mitigation.