Skip to main content
Log in

Poisson Algebras for Non-Linear Field Theories in the Cahiers Topos

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We develop an approach to construct Poisson algebras for non-linear scalar field theories that is based on the Cahiers topos model for synthetic differential geometry. In this framework, the solution space of the field equation carries a natural smooth structure and, following Zuckerman’s ideas, we can endow it with a presymplectic current. We formulate the Hamiltonian vector field equation in this setting and show that it selects a family of observables which forms a Poisson algebra. Our approach provides a clean splitting between geometric and algebraic aspects of the construction of a Poisson algebra, which are sufficient to guarantee existence, and analytical aspects that are crucial to analyze its properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization. European Mathematical Society, Zürich (2007). arXiv:0806.1036 [math.DG]

  2. Benini, M., Schenkel, A., Szabo, R.J.: Homotopy colimits and global observables in Abelian gauge theory. Lett. Math. Phys. 105(9), 1193 (2015). arXiv:1503.08839 [math-ph]

  3. Brunetti, R., Fredenhagen, K., Ribeiro, P.L.: Algebraic Structure of Classical Field Theory I: Kinematics and Linearized Dynamics for Real Scalar Fields. arXiv:1209.2148 [math-ph]

  4. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: A new paradigm for local quantum field theory. Commun. Math. Phys. 237(1-2), 31 (2003). arXiv:math-ph/0112041

  5. Collini, G.: Fedosov Quantization and Perturbative Quantum Field Theory. arXiv:1603.09626 [math-ph]

  6. Dubuc, E.: Sur les modèles de la géométrie différentielle synthétique. Cahiers Topol. Géom. Différentielle Catég. 20(3), 231–279 (1979)

    MATH  Google Scholar 

  7. Farkas, D.R.: Modules for Poisson algebras. Commun. Algebra 28(7), 3293–3306 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Joyal, A., Tierney, M.: Strong stacks and classifying space. Category theory (Como 1990), Lecture Notes in Math. vol. 1488, pp. 213–236. Springer, New York (1991)

  9. Joyce, D.: Algebraic Geometry over \(C^\infty \)-rings. arXiv:1001.0023 [math.AG]

  10. Khavkine, I.: Covariant phase space, constraints, gauge and the Peierls formula. Int. J. Mod. Phys. A 29(5), 1430009 (2014). arXiv:1402.1282 [math-ph]

  11. Kock, A.: Convenient vector spaces embed into the Cahiers topos. Cahiers Topol. Géom. Différentielle Catég. 27(1), 3–17 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Kock, A.: Synthetic differential geometry. London Mathematical Society Lecture Note Series, vol. 333. Cambridge University Press, Cambridge (2006)

  13. Kock, A., Reyes, G.E.: Corrigendum and addenda to the paper “Convenient vector spaces embed...”. Cahiers Topologie Géom. Différentielle Catég. 28(2), 99–110 (1987)

  14. Kriegl, A., Michor, P.W.: The convenient setting of global analysis. Mathematical Surveys and Monographs, vol. 53. American Mathematical Society, Providence, RI (1997)

  15. Lavendhomme, R.: Basic concepts of synthetic differential geometry. Kluwer Texts in the Mathematical Sciences, vol. 13. Kluwer Academic Publishers Group, Dordrecht (1996)

  16. Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic: A first introduction to topos theory. Springer, New York (1994)

  17. Moerdijk, I., Reyes, G.E.: Models for Smooth Infinitesimal Analysis. Springer, New York (1991)

    Book  MATH  Google Scholar 

  18. Zuckerman, G.J.: Action principles and global geometry. In: Yau, S.T. (ed.) Mathematical aspects of string theory. Advanced Series in Mathematical Physics, vol. 1. World Scientific, Singapore (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Benini.

Additional information

Communicated by Karl-Henning Rehren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benini, M., Schenkel, A. Poisson Algebras for Non-Linear Field Theories in the Cahiers Topos. Ann. Henri Poincaré 18, 1435–1464 (2017). https://doi.org/10.1007/s00023-016-0533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0533-2

Navigation