, Volume 5, Issue 2, pp 203-233,
Open Access This content is freely available online to anyone, anywhere at any time.

Proof of the Ergodic Hypothesis for Typical Hard Ball Systems

Abstract.

We consider the system of \( N (\geq 2) \) hard balls with masses \( m_{1}, \ldots, m_{N} \) and radius r in the flat torus \( \mathbb{T}_{L}^{\nu} = \mathbb{R}^{\nu} / L \cdot \mathbb{Z}^{\nu} \) of size \( L, \nu \geq 3 \) . We prove the ergodicity (actually, the Bernoulli mixing property) of such systems for almost every selection \( (m_{1}, \ldots, m_{N}; L) \) of the outer geometric parameters. This theorem complements my earlier result that proved the same, almost sure ergodicity for the case \( \nu = 2 \) . The method of that proof was primarily dynamical-geometric, whereas the present approach is inherently algebraic.

Communicated by Eduard Zehnder
Submitted 17/10/02, accepted 01/12/03