Journal of Mathematical Fluid Mechanics

, Volume 13, Issue 1, pp 33–53

On an Iterative Method for Approximate Solutions of a Generalized Boussinesq Model

  • José Luiz Boldrini
  • Blanca Climent-Ezquerra
  • María Drina Rojas-Medar
  • Marko A. Rojas-Medar
Article

DOI: 10.1007/s00021-009-0001-6

Cite this article as:
Boldrini, J.L., Climent-Ezquerra, B., Rojas-Medar, M.D. et al. J. Math. Fluid Mech. (2011) 13: 33. doi:10.1007/s00021-009-0001-6

Abstract

An iterative method is proposed for finding approximate solutions of an initial and boundary value problem for a nonstationary generalized Boussinesq model for thermally driven convection of fluids with temperature dependent viscosity and thermal conductivity. Under certain conditions, it is proved that such approximate solutions converge to a solution of the original problem; moreover, convergence-rate bounds for the constructed approximate solutions are also obtained.

Mathematics Subject Classification (2000)

Primary 35Q30Secondary 76D0376M9965M15

Keywords

Boussinesq equationsstrong solutionsiterative method

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  • José Luiz Boldrini
    • 1
  • Blanca Climent-Ezquerra
    • 2
  • María Drina Rojas-Medar
    • 3
  • Marko A. Rojas-Medar
    • 4
  1. 1.IMECC-UNICAMPCampinasBrazil
  2. 2.Dpto. de Ecuaciones Diferenciales y Análisis Numérico Facultad de MatemáticasUniversidad de SevillaSevillaSpain
  3. 3.Dpto. de MatemáticaUniversidad de AntofagastaAntofagastaChile
  4. 4.Dpto. de Ciencias Básicas, Facultad de CienciasUniversidad del Bío-BíoChillánChile