Article

Journal of Mathematical Fluid Mechanics

, Volume 13, Issue 1, pp 33-53

First online:

On an Iterative Method for Approximate Solutions of a Generalized Boussinesq Model

  • José Luiz BoldriniAffiliated withIMECC-UNICAMP Email author 
  • , Blanca Climent-EzquerraAffiliated withDpto. de Ecuaciones Diferenciales y Análisis Numérico Facultad de Matemáticas, Universidad de Sevilla
  • , María Drina Rojas-MedarAffiliated withDpto. de Matemática, Universidad de Antofagasta
  • , Marko A. Rojas-MedarAffiliated withDpto. de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

An iterative method is proposed for finding approximate solutions of an initial and boundary value problem for a nonstationary generalized Boussinesq model for thermally driven convection of fluids with temperature dependent viscosity and thermal conductivity. Under certain conditions, it is proved that such approximate solutions converge to a solution of the original problem; moreover, convergence-rate bounds for the constructed approximate solutions are also obtained.

Mathematics Subject Classification (2000)

Primary 35Q30 Secondary 76D03 76M99 65M15

Keywords

Boussinesq equations strong solutions iterative method