Journal of Mathematical Fluid Mechanics

, Volume 13, Issue 1, pp 33–53

On an Iterative Method for Approximate Solutions of a Generalized Boussinesq Model

Authors

    • IMECC-UNICAMP
  • Blanca Climent-Ezquerra
    • Dpto. de Ecuaciones Diferenciales y Análisis Numérico Facultad de MatemáticasUniversidad de Sevilla
  • María Drina Rojas-Medar
    • Dpto. de MatemáticaUniversidad de Antofagasta
  • Marko A. Rojas-Medar
    • Dpto. de Ciencias Básicas, Facultad de CienciasUniversidad del Bío-Bío
Article

DOI: 10.1007/s00021-009-0001-6

Cite this article as:
Boldrini, J.L., Climent-Ezquerra, B., Rojas-Medar, M.D. et al. J. Math. Fluid Mech. (2011) 13: 33. doi:10.1007/s00021-009-0001-6

Abstract

An iterative method is proposed for finding approximate solutions of an initial and boundary value problem for a nonstationary generalized Boussinesq model for thermally driven convection of fluids with temperature dependent viscosity and thermal conductivity. Under certain conditions, it is proved that such approximate solutions converge to a solution of the original problem; moreover, convergence-rate bounds for the constructed approximate solutions are also obtained.

Mathematics Subject Classification (2000)

Primary 35Q30Secondary 76D0376M9965M15

Keywords

Boussinesq equationsstrong solutionsiterative method
Download to read the full article text

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009