Journal of Mathematical Fluid Mechanics

, Volume 6, Issue 1, pp 53–77

Global Strong Solutions for the Two-Dimensional Motion of an Infinite Cylinder in a Viscous Fluid

Original paper

DOI: 10.1007/s00021-003-0083-4

Cite this article as:
Takahashi, T. & Tucsnak, M. J. math. fluid mech. (2004) 6: 53. doi:10.1007/s00021-003-0083-4
  • 97 Downloads

Abstract

In this paper, we consider a two-dimensional fluid-rigid body problem. The motion of the fluid is modelled by the Navier-Stokes equations, whereas the dynamics of the rigid body is governed by the conservation laws of linear and angular momentum. The rigid body is supposed to be an infinite cylinder of circular cross-section. Our main result is the existence and uniqueness of global strong solutions.

Mathematics Subject Classification (2000).

35Q30 76D03 76D05 

Keywords.

Navier--Stokes equations Incompressible fluid Rigid bodies Strong solutions 

Copyright information

© Birkhäuser-Verlag 2004

Authors and Affiliations

  1. 1.Institut Elie CartanFaculté des SciencesVandoeuvre-lès-NancyFrance
  2. 2.Institut Elie CartanFaculté des SciencesVandoeuvre-lès-NancyFrance