, Volume 56, Issue 9-10, pp 825-842

ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Regulated protein degradation by ATP-dependent proteases plays a fundamental role in the biogenesis of mitochondria. Membrane-bound and soluble ATP-dependent proteases have been identified in various subcompartments of this organelle. Subunits composing these proteases are evolutionarily conserved from yeast to humans and, in support of an endosymbiotic origin of mitochondria, evolved from prokaryotic ancestors: the PIM1/Lon protease is active in the matrix of mitochondria, while the i-AAA protease and the m-AAA protease mediate the turnover of inner membrane proteins. Most of the knowledge concerning the biogenesis and the physiological role of ATP-dependent proteases comes from studies in the yeast Saccharomyces cerevisiae. Proteases were found to be required for mitochondrial stasis, for the maintenance of the morphology of the organelle and for mitochondrial genome integrity. ATP-dependent proteolysis is crucial for the expression of mitochondrially encoded subunits of respiratory chain complexes and for the assembly of these complexes. Hence, mitochondrial ATP-dependent proteases exert multiple roles which are essential for the maintenance of cellular respiratory competence.

Received 17 June 1999; received after revision 18 August 1999; accepted 23 August 1999