Cellular and Molecular Life Sciences CMLS

, Volume 56, Issue 9, pp 825–842

ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae

Authors

  • L. Van Dyck
    • Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Goethestrasse 33, D-80336 München (Germany), Fax +49 89 5996270, e-mail: langer@bio.med.uni-muenchen.de
  • T. Langer
    • Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Goethestrasse 33, D-80336 München (Germany), Fax +49 89 5996270, e-mail: langer@bio.med.uni-muenchen.de

DOI: 10.1007/s000180050029

Cite this article as:
Van Dyck, L. & Langer, T. CMLS, Cell. Mol. Life Sci. (1999) 56: 825. doi:10.1007/s000180050029

Abstract.

Regulated protein degradation by ATP-dependent proteases plays a fundamental role in the biogenesis of mitochondria. Membrane-bound and soluble ATP-dependent proteases have been identified in various subcompartments of this organelle. Subunits composing these proteases are evolutionarily conserved from yeast to humans and, in support of an endosymbiotic origin of mitochondria, evolved from prokaryotic ancestors: the PIM1/Lon protease is active in the matrix of mitochondria, while the i-AAA protease and the m-AAA protease mediate the turnover of inner membrane proteins. Most of the knowledge concerning the biogenesis and the physiological role of ATP-dependent proteases comes from studies in the yeast Saccharomyces cerevisiae. Proteases were found to be required for mitochondrial stasis, for the maintenance of the morphology of the organelle and for mitochondrial genome integrity. ATP-dependent proteolysis is crucial for the expression of mitochondrially encoded subunits of respiratory chain complexes and for the assembly of these complexes. Hence, mitochondrial ATP-dependent proteases exert multiple roles which are essential for the maintenance of cellular respiratory competence.

Key words.PIM1; LON; YTA10 (AFG3); YTA12 (RCA1); YME1; m-AAA protease; i-AAA protease; yeast; mitochondria; ATP-dependent protease; proteolysis; respiratory chain; respiration; intron splicing; complex assembly.

Copyright information

© Birkhäuser Verlag Basel, 1999