Skip to main content
Log in

Hormonal control of cold stress responses in plants

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cold stress responses in plants are highly sophisticated events that alter the biochemical composition of cells for protection from damage caused by low temperatures. In addition, cold stress has a profound impact on plant morphologies, causing growth repression and reduced yields. Complex signalling cascades are utilised to induce changes in cold-responsive gene expression that enable plants to withstand chilling or even freezing temperatures. These cascades are governed by the activity of plant hormones, and recent research has provided a better understanding of how cold stress responses are integrated with developmental pathways that modulate growth and initiate other events that increase cold tolerance. Information on the hormonal control of cold stress signalling is summarised to highlight the significant progress that has been made and indicate gaps that still exist in our understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACO:

ACC oxidase

ACS:

ACC synthase

AHK:

Arabidopsis histidine kinase

AHP:

Histidine phosphotransfer protein

AOPP:

l-α-Aminooxy-β-phenylpropionic acid

ARR:

Arabidopsis response regulator

AVG:

2-Aminoethoxyvinyl glycine

BES1:

BRI1-EMS-suppressor 1

BRI1:

Brassinosteroid insensitive 1

BRs:

Brassinosteroids

BZR1:

Brassinazole-resistant 1

CAMTA:

Calmodulin-binding transcription activator

CAS:

Cold-acclimation-specific

CBF:

C-repeat binding factor

CK:

Cytokinins

COI1:

Coronatine insensitive 1

COR:

Cold regulated

CPD:

Constitutive photomorphogenesis and dwarfism

CPKs:

Calcium-dependent protein kinases

CPR1:

Constitutive expression of PR genes

CRT/DRE:

C-repeat/dehydration-responsive element

CTR1:

Constitutive triple response 1

DREB:

Drought-responsive element-binding protein

DWF4:

Dwarf 4

EDS5:

Enhanced disease susceptibility 5

EIL1:

EIN3-like 1

EIN2:

Ethylene-insensitive 2

EIN3:

Ethylene-insensitive 3

ENO2:

Enolase 2

ETR1:

Ethylene-responsive 1

GAI:

Gibberellic acid insensitive

GAs:

Gibberellins

GID1:

GA-insensitive dwarf 1

GNC:

Gata, nitrate-inducible, carbon-metabolism involved

GNL:

GNC-like

HHP:

Heptahelical protein

HR:

Hypersensitive response

IAA:

Indole acetic acid

IBA:

Indole butyric acid

ICE1:

Inducer of cbf expression 1

ICS:

Isochorismate synthase

JA:

Jasmonic acid

JAZ:

Jasmonate zim domain

KIN:

Cold induced

LOS2/AtMBP-1:

Low expression of osmotically responsive genes 2/Arabidopsis thaliana c-MYC binding protein

MAPKs:

Mitogen-activated protein kinases

OST1:

Open stomata 1

PAL:

Phenylalanine-ammonia-lyase

PIF:

Phytochrome-interacting factor

PIN:

PIN-formed

RGA:

Repressor of gai

RGL:

RGA-like

SA:

Salicylic acid

References

  1. Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    Article  CAS  Google Scholar 

  2. Frederiks TM, Christopher JT, Sutherland MW, Borrell AK (2015) Post-head-emergence frost in wheat and barley: defining the problem, assessing the damage, and identifying resistance. J Exp Bot 66:3487–3498

    Article  CAS  PubMed  Google Scholar 

  3. Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  4. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed Central  PubMed  Google Scholar 

  5. Patel D, Franklin KA (2009) Temperature-regulation of plant architecture. Plant Signal Behav 4:577–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Scott IM, Clarke SM, Wood JE, Mur LA (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135:1040–1049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. An D, Yang J, Zhang P (2012) Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genomics 13:64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chaudhary S, Sharma PC (2015) DeepSAGE based differential gene expression analysis under cold and freeze stress in seabuckthorn (Hippophae rhamnoides L.). PLoS One 10:e0121982

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Chen J, Tian Q, Pang T, Jiang L, Wu R, Xia X, Yin W (2014) Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica. BMC Genomics 15:326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Barah P, Jayavelu ND, Rasmussen S, Nielsen HB, Mundy J, Bones AM (2013) Genome-scale cold stress response regulatory networks in ten Arabidopsis thaliana ecotypes. BMC Genomics 14:722

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Jung HJ, Dong X, Park JI, Thamilarasan SK, Lee SS, Kim YK, Lim YP, Nou IS, Hur Y (2014) Genome-wide transcriptome analysis of two contrasting Brassica rapa doubled haploid lines under cold-stresses using Br 135K oligomeric chip. PLoS One 9:e106069

    Article  PubMed Central  PubMed  Google Scholar 

  13. Leyva-Pérez Mde L, Valverde-Corredor A, Valderrama R, Jiménez-Ruiz J, Muñoz-Merida A, Trelles O, Barroso JB, Mercado-Blanco J, Luque F (2015) Early and delayed long-term transcriptional changes and short-term transient responses during cold acclimation in olive leaves. DNA Res 22:1–11

    Article  PubMed  Google Scholar 

  14. Li B, Ning L, Zhang J, Bao M, Zhang W (2015) Transcriptional profiling of Petunia seedlings reveals candidate regulators of the cold stress response. Front Plant Sci 6:118

    PubMed Central  PubMed  Google Scholar 

  15. Moliterni VM, Paris R, Onofri C, Orrù L, Cattivelli L, Pacifico D, Avanzato C, Ferrarini A, Delledonne M, Mandolino G (2015) Early transcriptional changes in Beta vulgaris in response to low temperature. Planta 242:187–201

    Article  CAS  PubMed  Google Scholar 

  16. Pang T, Ye CY, Xia X, Yin W (2013) De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Genomics 14:488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Park JW, Benatti TR, Marconi T, Yu Q, Solis-Gracia N, Mora V, da Silva JA (2015) Cold responsive gene expression profiling of sugarcane and Saccharum spontaneum with functional analysis of a cold inducible Saccharum homolog of NOD26-like intrinsic protein to salt and water stress. PLoS One 10:e0125810

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Qu Y, Zhou A, Zhang X, Tang H, Liang M, Han H, Zuo Y (2015) De novo transcriptome sequencing of low temperature-treated Phlox subulata and analysis of the genes involved in cold stress. Int J Mol Sci 16:9732–9748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ren L, Sun J, Chen S, Gao J, Dong B, Liu Y, Xia X, Wang Y, Liao Y, Teng N, Fang W, Guan Z, Chen F, Jiang J (2014) A transcriptomic analysis of Chrysanthemum nankingense provides insights into the basis of low temperature tolerance. BMC Genomics 15:844

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Sobkowiak A, Jończyk M, Jarochowska E, Biecek P, Trzcinska-Danielewicz J, Leipner J, Fronk J, Sowiński P (2014) Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines. Plant Mol Biol 85:317–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Song Y, Chen Q, Ci D, Zhang D (2013) Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii. Plant Cell Rep 32:1407–1425

    Article  CAS  PubMed  Google Scholar 

  22. Sun P, Mao Y, Li G, Cao M, Kong F, Wang L, Bi G (2015) Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses. BMC Genomics 16:463

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Tian DQ, Pan XY, Yu YM, Wang WY, Zhang F, Ge YY, Shen XL, Shen FQ, Liu XJ (2013) De novo characterization of the Anthurium transcriptome and analysis of its digital gene expression under cold stress. BMC Genomics 14:827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wang H, Zou Z, Wang S, Gong M (2013) Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L. PLoS One 8:e82817

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Wang XC, Zhao QY, Ma CL, Zhang ZH, Cao HL, Kong YM, Yue C, Hao XY, Chen L, Ma JQ, Jin JQ, Li X, Yang YJ (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Wang J, Yang Y, Liu X, Huang J, Wang Q, Gu J, Lu Y (2014) Transcriptome profiling of the cold response and signaling pathways in Lilium lancifolium. BMC Genomics 15:203

    Article  PubMed Central  PubMed  Google Scholar 

  27. Wu Y, Wei W, Pang X, Wang X, Zhang H, Dong B, Xing Y, Li X, Wang M (2014) Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. BMC Genomics 15:671

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Xin H, Zhu W, Wang L, Xiang Y, Fang L, Li J, Sun X, Wang N, Londo JP, Li S (2013) Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress. PLoS One 8:e58740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Xu W, Li R, Zhang N, Ma F, Jiao Y, Wang Z (2014) Transcriptome profiling of Vitis amurensis, an extremely cold-tolerant Chinese wild Vitis species, reveals candidate genes and events that potentially connected to cold stress. Plant Mol Biol 86:527–541

    Article  CAS  PubMed  Google Scholar 

  30. Zhang T, Zhao X, Wang W, Pan Y, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B (2012) Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes. PLoS One 7:e43274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Zhao Z, Tan L, Dang C, Zhang H, Wu Q, An L (2012) Deep-sequencing transcriptome analysis of chilling tolerance mechanisms of a subnival alpine plant, Chorispora bungeana. BMC Plant Biol 12:222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zhu YN, Shi DQ, Ruan MB, Zhang LL, Meng ZH, Liu J, Yang WC (2013) Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS One 8:e80218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lee BH, Henderson DA, Zhu JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Park S, Lee CM, Doherty CJ, Gilmour SJ, Kim Y, Thomashow MF (2015) Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Plant J 82:193–207

    Article  CAS  PubMed  Google Scholar 

  35. Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101:3985–3990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    Article  CAS  PubMed  Google Scholar 

  38. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Fursova OV, Pogorelko GV, Tarasov VA (2009) Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene 429:98–103

    Article  CAS  PubMed  Google Scholar 

  41. Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Miura K, Ohta M, Nakazawa M, Ono M, Hasegawa PM (2011) ICE1 Ser403 is necessary for protein stabilization and regulation of cold signaling and tolerance. Plant J 67:269–279

    Article  CAS  PubMed  Google Scholar 

  43. Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S (2015) OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev Cell 32:278–289

    Article  CAS  PubMed  Google Scholar 

  44. Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692–2702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Kang M, Abdelmageed H, Lee S, Reichert A, Mysore KS, Allen RD (2013) AtMBP-1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5. Plant J 76:481–493

    Article  CAS  PubMed  Google Scholar 

  47. Eremina M, Rozhon W, Yang S, Poppenberger B (2015) ENO2 activity is required for the development and reproductive success of plants, and is feedback-repressed by AtMBP-1. Plant J 81:895–906

    Article  CAS  PubMed  Google Scholar 

  48. Barrero-Gil J, Salinas J (2013) Post-translational regulation of cold acclimation response. Plant Sci 205–206:48–54

    Article  PubMed  CAS  Google Scholar 

  49. Knight MR, Knight H (2012) Low-temperature perception leading to gene expression and cold tolerance in higher plants. New Phytol 195:737–751

    Article  CAS  PubMed  Google Scholar 

  50. Santner A, Calderon-Villalobos LI, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307

    Article  CAS  PubMed  Google Scholar 

  51. Franklin KA (2009) Light and temperature signal crosstalk in plant development. Curr Opin Plant Biol 12:63–68

    Article  CAS  PubMed  Google Scholar 

  52. Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    Article  CAS  PubMed  Google Scholar 

  53. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  CAS  PubMed  Google Scholar 

  54. Schwechheimer C (2012) Gibberellin signaling in plants—the extended version. Front Plant Sci 2:107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, Schäfer E, Fu X, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–484

    Article  PubMed  CAS  Google Scholar 

  57. Li QF, Wang C, Jiang L, Li S, Sun SS, He JX (2012) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal 5:ra72

    PubMed  Google Scholar 

  58. Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Richter R, Bastakis E, Schwechheimer C (2013) Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis. Plant Physiol 162:1992–2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Zhou M, Xu M, Wu L, Shen C, Ma H, Lin J (2014) CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling. Plant Mol Biol 85:259–275

    Article  CAS  PubMed  Google Scholar 

  62. Shan DP, Huang JG, Yang YT, Guo YH, Wu CA, Yang GD, Gao Z, Zheng CC (2007) Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytol 176:70–81

    Article  CAS  PubMed  Google Scholar 

  63. Tanaka N, Matsuoka M, Kitano H, Asano T, Kaku H, Komatsu S (2006) gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ 29:619–631

    Article  CAS  PubMed  Google Scholar 

  64. Richter R, Behringer C, Müller IK, Schwechheimer C (2010) The GATAtype transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and PHYTOCHROMEINTERACTING FACTORS. Genes Dev 24:2093–2104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Lee CM, Thomashow MF (2012) Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proc Natl Acad Sci USA 109:15054–15059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Franklin KA, Whitelam GC (2007) Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Nat Genet 39:1410–1413

    Article  CAS  PubMed  Google Scholar 

  67. Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Bernardo-García S, de Lucas M, Martínez C, Espinosa-Ruiz A, Davière JM, Prat S (2014) BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev 28:1681–1694

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, Mayer KF, Sieberer T, Poppenberger B (2015) Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27:2261–2272

    Article  CAS  PubMed  Google Scholar 

  71. Stewart Lilley JL, Gan Y, Graham IA, Nemhauser JL (2013) The effects of DELLAs on growth change with developmental stage and brassinosteroid levels. Plant J 76:165–173

    CAS  PubMed  Google Scholar 

  72. Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14:810–817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Gallego-Bartolomé J, Minguet EG, Grau-Enguix F, Abbas M, Locascio A, Thomas SG, Alabadí D, Blázquez MA (2012) Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 109:13446–134451

    Article  PubMed Central  PubMed  Google Scholar 

  74. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Singh I, Kumar U, Singh SK, Gupta C, Singh M, Kushwaha SR (2012) Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiol Mol Biol Plants 18:229–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Jiang YP, Huang LF, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2013) Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol Plant 148:133–145

    Article  CAS  PubMed  Google Scholar 

  77. Divi UK, Krishna P (2010) Overexpression of the brassinosteroid biosynthetic gene AtDWF4 in Arabidopsis seeds overcomes abscisic acid-induced inhibition of germination and increases cold tolerance in transgenic seedlings. J Plant Growth Regul 29:385–393

    Article  CAS  Google Scholar 

  78. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364

    Article  CAS  PubMed  Google Scholar 

  79. Qu T, Liu R, Wang W, An L, Chen T, Liu G, Zhao Z (2011) Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress. Cryobiology 63:111–117

    Article  CAS  PubMed  Google Scholar 

  80. Kim SY, Kim BH, Lim CJ, Lim CO, Nam KH (2010) Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1 (bri1) mutant results in higher tolerance to cold. Physiol Plant 138:191–204

    Article  CAS  PubMed  Google Scholar 

  81. Hannah MA, Heyer AG, Hincha DK (2005) A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet 1:e26

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    Article  CAS  PubMed  Google Scholar 

  83. Gavelienė V, Novickienė L, Pakalniškytė L (2013) Effect of auxin physiological analogues on rapeseed (Brassica napus) cold hardening, seed yield and quality. J Plant Res 126:283–292

    Article  PubMed  CAS  Google Scholar 

  84. Kosová K, Prášil IT, Vítámvás P, Dobrev P, Motyka V, Floková K, Novák O, Turečková V, Rolčik J, Pešek B, Trávničková A, Gaudinová A, Galiba G, Janda T, Vlasáková E, Prášilová P, Vanková R (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576

    Article  PubMed  CAS  Google Scholar 

  85. Majláth I, Szalai G, Soós V, Sebestyén E, Balázs E, Vanková R, Dobrev PI, Tari I, Tandori J, Janda T (2012) Effect of light on the gene expression and hormonal status of winter and spring wheat plants during cold hardening. Physiol Plant 145:296–314

    Article  PubMed  CAS  Google Scholar 

  86. Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H, Kojima M, Sakakibara H, Shibata D, Saito K, Shinozaki K, Yamaguchi-Shinozaki K (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164:1759–1771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397

    Article  PubMed Central  PubMed  Google Scholar 

  88. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  89. Fukaki H, Fujisawa H, Tasaka M (1996) Gravitropic response of inflorescence stems in Arabidopsis thaliana. Plant Physiol 110:933–943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Wyatt SE, Rashotte AM, Shipp MJ, Robertson D, Muday GK (2002) Mutations in the gravity persistence signal loci in Arabidopsis disrupt the perception and/or signal transduction of gravitropic stimuli. Plant Physiol 130:1426–1435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21:3823–3838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  CAS  PubMed  Google Scholar 

  93. Jeon J, Kim NY, Kim S, Kang NY, Novák O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M, Kim J (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23371–23386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Veselova SV, Farhutdinov RG, Veselov SY, Kudoyarova GR, Veselov DS, Hartung W (2005) The effect of root cooling on hormone content, leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.). J Plant Physiol 162:21–26

    Article  CAS  PubMed  Google Scholar 

  96. Jeon J, Kim J (2013) Arabidopsis response Regulator1 and Arabidopsis histidine phosphotransfer Protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol 161:408–424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Article  PubMed Central  PubMed  Google Scholar 

  98. Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AF, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Baron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:48–59

    Article  PubMed  CAS  Google Scholar 

  100. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  101. Lee HG, Seo PJ (2015) The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis. Plant J 82:962–977

    Article  CAS  PubMed  Google Scholar 

  102. Chen CC, Liang CS, Kao AL, Yang CC (2010) HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. J Exp Bot 61:3305–3320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Mustilli AC, Merlot S, Vavasseur A, Fenzi F, Giraudat J (2002) Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14:3089–3099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Yoo SD, Cho Y, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Ciardi JA, Deikman J, Orzolek MD (1997) Increased ethylene synthesis enhances chilling tolerance in tomato. Physiol Plant 101:333–340

    Article  CAS  Google Scholar 

  106. Yu XM, Griffith M, Wiseman SB (2001) Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol 126:1232–1240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. Guye MG, Vigh L, Wilson LM (1987) Chilling-induced ethylene production in relation to chill-sensitivity in Phaseolus spp. J Exp Bot 38:680–690

    Article  CAS  Google Scholar 

  108. Guo Z, Tan J, Zhuo C, Wang C, Xiang B, Wang Z (2014) Abscisic acid, H2O2 and nitric oxide interactions mediated cold-induced S-adenosylmethionine synthetase in Medicago sativa subsp. falcata that confers cold tolerance through up-regulating polyamine oxidation. Plant Biotechnol J 12:601–612

    Article  CAS  PubMed  Google Scholar 

  109. Catalá R, López-Cobollo R, Mar Castellano M, Angosto T, Alonso JM, Ecker JR, Salinas J (2014) The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26:3326–3342

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  110. Zhao M, Liu W, Xia X, Wang T, Zhang WH (2014) Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene. Physiol Plant 152:115–129

    Article  CAS  PubMed  Google Scholar 

  111. Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16:554–560

    Article  CAS  PubMed  Google Scholar 

  112. Tian Y, Zhang H, Pan X, Chen X, Zhang Z, Lu X, Huang R (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20:857–866

    Article  CAS  PubMed  Google Scholar 

  113. Zhang Z, Zhang H, Quan R, Wang XC, Huang R (2009) Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol 150:365–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. Zhang Z, Huang R (2010) Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol Biol 73:241–249

    Article  CAS  PubMed  Google Scholar 

  115. Schaller GE (2012) Ethylene and the regulation of plant development. BMC Biol 10:9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  CAS  PubMed  Google Scholar 

  117. Xia JC, Zhao H, Liu WZ, Li LG, He YK (2009) Role of cytokinin and salicylic acid in plant growth at low temperatures. Plant Growth Regul 57:211–221

    Article  CAS  Google Scholar 

  118. Wolters H, Jürgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317

    Article  CAS  PubMed  Google Scholar 

  119. Dong CJ, Li L, Shang QM, Liu XY, Zhang ZG (2014) Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings. Planta 240:687–700

    Article  CAS  PubMed  Google Scholar 

  120. Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75:364–376

    Article  CAS  PubMed  Google Scholar 

  121. Huang X, Li J, Bao F, Zhang X, Yang S (2010) A gain-of-function mutation in the Arabidopsis disease resistance gene RPP4 confers sensitivity to low temperature. Plant Physiol 154(2):796–809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Yang H, Shi Y, Liu J, Guo L, Zhang X, Yang S (2010) A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. Plant J 63(2):283–296

    Article  CAS  PubMed  Google Scholar 

  123. Miura K, Ohta M (2010) SIZ1, a small ubiquitin-related modifier ligase, controls cold signaling through regulation of salicylic acid accumulation. J Plant Physiol 167:555–560

    Article  CAS  PubMed  Google Scholar 

  124. Hu Y, Jiang L, Wang F, Yu D (2013) Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, Xiao LT, Sun TP, Li J, Deng XW, Lee CM, Thomashow MF, Yang Y, He Z, He SY (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci USA 109:E1192–E1200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Thalhammer A, Bryant G, Sulpice R, Hincha DK (2014) Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo. Plant Physiol 166:190–201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologise to all colleagues whose contributions could not be cited or discussed due to space limitations. This work was supported by funds from the Deutsche Forschungsgemeinschaft DFG (Projects PO1640/4-1 and SFB924 TP-A12 to B.P.) and a fellowship to M.E. (doctoral fellowship from TUM). M.E. was a member of the TUM Graduate School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Poppenberger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremina, M., Rozhon, W. & Poppenberger, B. Hormonal control of cold stress responses in plants. Cell. Mol. Life Sci. 73, 797–810 (2016). https://doi.org/10.1007/s00018-015-2089-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2089-6

Keywords

Navigation