Skip to main content

Advertisement

Log in

Computationally driven deletion of broadly distributed T cell epitopes in a biotherapeutic candidate

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Biotherapeutics are subject to immune surveillance within the body, and anti-biotherapeutic immune responses can compromise drug efficacy and patient safety. Initial development of targeted antidrug immune memory is coordinated by T cell recognition of immunogenic subsequences, termed “T cell epitopes.” Biotherapeutics may therefore be deimmunized by mutating key residues within cognate epitopes, but there exist complex trade-offs between immunogenicity, mutational load, and protein structure–function. Here, a protein deimmunization algorithm has been applied to P99 beta-lactamase, a component of antibody-directed enzyme prodrug therapies. The algorithm, integer programming for immunogenic proteins, seamlessly integrates computational prediction of T cell epitopes with both 1- and 2-body sequence potentials that assess protein tolerance to epitope-deleting mutations. Compared to previously deimmunized P99 variants, which bore only one or two mutations, the enzymes designed here contain 4–5 widely distributed substitutions. As a result, they exhibit broad reductions in major histocompatibility complex recognition. Despite their high mutational loads and markedly reduced immunoreactivity, all eight engineered variants possessed wild-type or better catalytic activity. Thus, the protein design algorithm is able to disrupt broadly distributed epitopes while maintaining protein function. As a result, this computational tool may prove useful in expanding the repertoire of next-generation biotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APCs:

Antigen-presenting cells

MHC II:

Class II major histocompatibility complex proteins

DP2 :

Dynamic programming for deimmunizing proteins

P99βL:

Enterobacter chloacae P99 beta-lactamase

IP2 :

Integer programming for immunogenic proteins

References

  1. Baker MP, Reynolds HM, Lumicisi B, Bryson CJ (2010) Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1(4):314–322. doi:10.4161/self.1.4.13904

    Article  PubMed Central  PubMed  Google Scholar 

  2. Barbosa MD (2011) Immunogenicity of biotherapeutics in the context of developing biosimilars and biobetters. Drug Discov Today 16(7–8):345–353. doi:10.1016/j.drudis.2011.01.011

    Article  CAS  PubMed  Google Scholar 

  3. De Groot AS, Scott DW (2007) Immunogenicity of protein therapeutics. Trends Immunol 28(11):482–490. doi:10.1016/J.It.2007.07.011

    Article  PubMed  Google Scholar 

  4. Schellekens H (2007) Immunogenicity of protein therapeutics, or how to make antibodies without T-cells. Inflamm Res 56:S351–S352

    Google Scholar 

  5. Schellekens H (2005) Factors influencing the immunogenicity of therapeutic proteins. Nephrol Dial Transplant 20(Suppl 6):vi3–vi9. doi:10.1093/ndt/gfh1092

  6. Trombetta ES, Mellman I (2005) Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 23:975–1028. doi:10.1146/annurev.immunol.22.012703.104538

    Article  CAS  PubMed  Google Scholar 

  7. Warmerdam PA, Plaisance S, Vanderlick K, Vandervoort P, Brepoels K, Collen D, De Maeyer M (2002) Elimination of a human T-cell region in staphylokinase by T-cell screening and computer modeling. Thromb Haemost 87(4):666–673

    CAS  PubMed  Google Scholar 

  8. Jones TB, Hart RP, Popovich PG (2005) Molecular control of physiological and pathological T-cell recruitment after mouse spinal cord injury. J Neurosci 25(28):6576–6583. doi:10.1523/JNEUROSCI.0305-05.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Harding FA, Liu AD, Stickler M, Razo OJ, Chin R, Faravashi N, Viola W, Graycar T, Yeung VP, Aehle W, Meijer D, Wong S, Rashid MH, Valdes AM, Schellenberger V (2005) A beta-lactamase with reduced immunogenicity for the targeted delivery of chemotherapeutics using antibody-directed enzyme prodrug therapy. Mol Cancer Ther 4(11):1791–1800. doi:10.1158/1535-7163.MCT-05-0189

    Article  CAS  PubMed  Google Scholar 

  10. Cizeau J, Grenkow DM, Brown JG, Entwistle J, MacDonald GC (2009) Engineering and biological characterization of VB6-845, an anti-EpCAM immunotoxin containing a T-cell epitope-depleted variant of the plant toxin bouganin. J Immunother 32(6):574–584. doi:10.1097/CJI.0b013e3181a6981c

    Article  CAS  PubMed  Google Scholar 

  11. Singh H, Raghava GP (2001) ProPred: prediction of HLA-DR binding sites. Bioinformatics 17(12):1236–1237

    Article  CAS  PubMed  Google Scholar 

  12. Guan P, Doytchinova IA, Zygouri C, Flower DR (2003) MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. Appl Bioinform 2(1):63–66

    CAS  Google Scholar 

  13. Wan J, Liu W, Xu Q, Ren Y, Flower DR, Li T (2006) SVRMHC prediction server for MHC-binding peptides. BMC Bioinform 7:463. doi:10.1186/1471-2105-7-463

    Article  Google Scholar 

  14. Bui HH, Sidney J, Peters B, Sathiamurthy M, Sinichi A, Purton KA, Mothe BR, Chisari FV, Watkins DI, Sette A (2005) Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57(5):304–314. doi:10.1007/s00251-005-0798-y

    Article  CAS  PubMed  Google Scholar 

  15. Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform 8:238. doi:10.1186/1471-2105-8-238

    Article  Google Scholar 

  16. Nielsen M, Justesen S, Lund O, Lundegaard C, Buus S (2010) NetMHCIIpan-2.0—Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res 6:9. doi:10.1186/1745-7580-6-9

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4(4):e1000048. doi:10.1371/journal.pcbi.1000048

    Article  PubMed Central  PubMed  Google Scholar 

  18. De Groot AS, Knopp PM, Martin W (2005) De-immunization of therapeutic proteins by T-cell epitope modification. Dev Biol (Basel) 122:171–194

    Google Scholar 

  19. Perry LC, Jones TD, Baker MP (2008) New approaches to prediction of immune responses to therapeutic proteins during preclinical development. Drugs R D 9(6):385–396. doi:10.2165/0126839-200809060-00004

    Article  CAS  PubMed  Google Scholar 

  20. De Groot AS, Martin W (2009) Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin Immunol 131(2):189–201. doi:10.1016/j.clim.2009.01.009

    Article  PubMed  Google Scholar 

  21. Kern F, LiPira G, Gratama JW, Manca F, Roederer M (2005) Measuring Ag-specific immune responses: understanding immunopathogenesis and improving diagnostics in infectious disease, autoimmunity and cancer. Trends Immunol 26(9):477–484. doi:10.1016/j.it.2005.07.005

    Article  CAS  PubMed  Google Scholar 

  22. Li Pira G, Ivaldi F, Moretti P, Manca F (2010) High throughput T epitope mapping and vaccine development. J Biomed Biotechnol 2010:325720. doi:10.1155/2010/325720

    Article  PubMed Central  PubMed  Google Scholar 

  23. Salvat RS, Moise L, Bailey-Kellogg C, Griswold KE (2014) A high throughput MHC II binding assay for quantitative analysis of peptide epitopes. J Vis Exp (in press). doi:10.1093/protein/gzs044

  24. Moise L, Song C, Martin WD, Tassone R, De Groot AS, Scott DW (2012) Effect of HLA DR epitope de-immunization of Factor VIII in vitro and in vivo. Clin Immunol 142(3):320–331. doi:10.1016/j.clim.2011.11.010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cantor JR, Yoo TH, Dixit A, Iverson BL, Forsthuber TG, Georgiou G (2011) Therapeutic enzyme deimmunization by combinatorial T-cell epitope removal using neutral drift. Proc Natl Acad Sci USA 108(4):1272–1277. doi:10.1073/pnas.1014739108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Koren E, De Groot AS, Jawa V, Beck KD, Boone T, Rivera D, Li L, Mytych D, Koscec M, Weeraratne D, Swanson S, Martin W (2007) Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin Immunol 124(1):26–32. doi:10.1016/j.clim.2007.03.544

    Article  CAS  PubMed  Google Scholar 

  27. Parker AS, Zheng W, Griswold KE, Bailey-Kellogg C (2010) Optimization algorithms for functional deimmunization of therapeutic proteins. BMC Bioinform 11:180. doi:10.1186/1471-2105-11-180

    Article  Google Scholar 

  28. Parker AS, Griswold KE, Bailey-Kellogg C (2011) Optimization of therapeutic proteins to delete T-cell epitopes while maintaining beneficial residue interactions. J Bioinform Comput Biol 9(2):207–229

    Article  CAS  PubMed  Google Scholar 

  29. Parker AS, Choi Y, Griswold KE, Bailey-Kellogg C (2013) Structure-guided deimmunization of therapeutic proteins. J Comput Biol 20(2):152–165. doi:10.1089/cmb.2012.0251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Choi Y, Griswold Ke, Bailey-Kellogg C Structure-based redesign of proteins for minimal T-cell epitope content. (1096-987X (Electronic))

  31. Osipovitch DC, Parker AS, Makokha CD, Desrosiers J, Kett WC, Moise L, Bailey-Kellogg C, Griswold KE (2012) Design and analysis of immune-evading enzymes for ADEPT therapy. Protein Eng Des Sel 25(10):613–623. doi:10.1093/protein/gzs044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sandler I, Zigdon N, Levy E, Aharoni A (2014) The functional importance of co-evolving residues in proteins. Cell Mol Life Sci 71:673–682

    Article  CAS  PubMed  Google Scholar 

  33. McCaldon P, Argos P (1988) Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide-sequences. Proteins Struct Funct Genet 4(2):99–122. doi:10.1002/prot.340040204

    Article  CAS  PubMed  Google Scholar 

  34. Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, Hoffman S, Kubo RT, Chesnut RW, Grey HM, Sette A (1998) Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol 160(7):3363–3373

    CAS  PubMed  Google Scholar 

  35. Stemmer WP, Crameri A, Ha KD, Brennan TM, Heyneker HL (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164(1):49–53

    Article  CAS  PubMed  Google Scholar 

  36. Mazor R, Vassall AN, Eberle JA, Beers R, Weldon JE, Venzon DJ, Tsang KY, Benhar I, Pastan I (2012) Identification and elimination of an immunodominant T-cell epitope in recombinant immunotoxins based on Pseudomonas exotoxin A. Proc Natl Acad Sci 109(51):E3597–E3603. doi:10.1073/pnas.1218138109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Yeung VP, Chang J, Miller J, Barnett C, Stickler M, Harding FA (2004) Elimination of an immunodominant CD4+ T cell epitope in human IFN-β does not result in an in vivo response directed at the subdominant epitope. J Immunol 172(11):6658–6665

    Article  CAS  PubMed  Google Scholar 

  38. Tangri S, Mothe BR, Eisenbraun J, Sidney J, Southwood S, Briggs K, Zinckgraf J, Bilsel P, Newman M, Chesnut R, LiCalsi C, Sette A (2005) Rationally engineered therapeutic proteins with reduced immunogenicity. J Immunol 174(6):3187–3196

    Article  CAS  PubMed  Google Scholar 

  39. Onda M (2009) Reducing the immunogenicity of protein therapeutics. Curr Drug Targets 10(2):131–139

    Article  CAS  PubMed  Google Scholar 

  40. Lee S (2010) Implications of available design space for identification of non-immunogenic protein therapeutics. Biomed Microdevices 12(2):283–286. doi:10.1007/s10544-009-9383-8

    Article  CAS  PubMed  Google Scholar 

  41. Hill JA, Wang DQ, Jevnikar AM, Cairns E, Bell DA (2003) The relationship between predicted peptide-MHC class II affinity and T-cell activation in a HLA-DR beta 1*0401 transgenic mouse model. Arthrit Res Therapy 5(1):R40–R48. doi:10.1186/ar605

    Article  CAS  Google Scholar 

  42. Weaver JM, Sant AJ (2009) Understanding the focused CD4 T cell response to antigen and pathogenic organisms. Immunol Res 45(2–3):123–143. doi:10.1007/s12026-009-8095-8

    Article  CAS  PubMed  Google Scholar 

  43. Schrödinger L The PyMOL Molecular Graphics System. 1.5.0.4 edn

Download references

Acknowledgments

This work was supported by NIH grant R01-GM-098977 to CBK and KEG. RSS was supported in part by a Luce Foundation Fellowship and in part by a Thayer Innovation Program Fellowship from the Thayer School of Engineering. The authors would like to thank Thomas Scanlon, Warren Kett, and Deeptak Verma for their insights and support.

Conflict of interest

Karl E. Griswold and Chris Bailey-Kellogg are Dartmouth faculty and co-members of Stealth Biologics, LLC, a Delaware biotechnology company. They acknowledge that there is a potential conflict of interest related to their association with this company, and they hereby affirm that the data presented in this paper is free of any bias. This work has been reviewed and approved as specified in these faculty members’ Dartmouth conflict of interest management plans. The remaining authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chris Bailey-Kellogg or Karl E. Griswold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvat, R.S., Parker, A.S., Guilliams, A. et al. Computationally driven deletion of broadly distributed T cell epitopes in a biotherapeutic candidate. Cell. Mol. Life Sci. 71, 4869–4880 (2014). https://doi.org/10.1007/s00018-014-1652-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1652-x

Keywords

Navigation