Skip to main content

Advertisement

Log in

Prevention of cisplatin-induced ototoxicity by the inhibition of gap junctional intercellular communication in auditory cells

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cis-diamminedichloroplatinum (cisplatin) is an effective chemotherapeutic drug for cancer therapy. However, most patients treated with cisplatin are at a high risk of ototoxicity, which causes severe hearing loss. Inspired by the “Good Samaritan effect” or “bystander effect” from gap junction coupling, we investigated the role of gap junctions in cisplatin-induced ototoxicity as a potential therapeutic method. We showed that connexin 43 (Cx43) was highly expressed in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells, mediating cell–cell communication. The viability of HEI-OC1 cells was greatly decreased by cisplatin treatment, and cisplatin-treated HEI-OC1 cells showed lower Cx43 expression compared to that of untreated HEI-OC1 cells. In particular, high accumulation of Cx43 was observed around the nucleus of cisplatin-treated cells, whereas scattered punctuate expression of Cx43 was observed in the cytoplasm and membrane in normal cells, suggesting that cisplatin may interrupt the normal gap junction communication by inhibiting the trafficking of Cx43 to cell membranes in HEI-OC1 cells. Interestingly, we found that the inhibition of gap junction activity reduced cisplatin-induced apoptosis of auditory hair cells. Cx43 siRNA- or 18α-GA-treated HEI-OC1 cells showed higher cell viability compared to control HEI-OC1 cells during cisplatin treatment; this was also supported by fluorescence recovery after photobleaching studies. Inhibition of gap junction activity reduced recovery of calcein acetoxymethyl ester fluorescence compared to control cells. Additionally, analysis of the mechanisms involved demonstrated that highly activate extracellular signal-regulated kinase and protein kinase B, combined with inhibition of gap junctions may promote cell viability during cisplatin treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

18α-GA:

18 alpha-glycyrrhetinic acid

Akt:

Protein kinase B

ATP:

Adenosine triphosphate

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

Cisplatin:

Cis-diamminedichloroplatinum

Cx:

Connexin

ERK:

Extracellular signal-regulated kinase

FRAP:

Fluorescence recovery after photobleaching

HEI-OC1:

House Ear Institute-Organ of Corti 1

InsP3:

Inositol trisphosphate

MAPK:

Mitogen-activated protein kinases

NOX3:

NADPH oxidase 3

PKC:

Protein kinase C

ROS:

Reactive oxygen species

SLDT:

Scrape load dye transfer

References

  1. Rybak LP, Whitworth CA, Mukherjea D, Ramkumar V (2007) Mechanisms of cisplatin-induced ototoxicity and prevention. Hear Res 226:157–167

    Article  PubMed  CAS  Google Scholar 

  2. Rybak LP, Mukherjea D, Jajoo S, Ramkumar V (2009) Cisplatin ototoxicity and protection: clinical and experimental studies. Tohoku J Exp Med 219:177–186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. McKeage MJ (1995) Comparative adverse effect profiles of platinum drugs. Drug Saf 13:228–244

    Article  PubMed  CAS  Google Scholar 

  4. Campbell KC, Meech RP, Rybak LP, Hughes LF (1999) d-Methionine protects against cisplatin damage to the stria vascularis. Hear Res 138:13–28

    Article  PubMed  CAS  Google Scholar 

  5. Li G, Liu W, Frenz D (2006) Cisplatin ototoxicity to the rat inner ear: a role for HMG1 and iNOS. Neurotoxicology 27:22–30

    Article  PubMed  Google Scholar 

  6. More SS, Akil O, Ianculescu AG, Geier EG, Lustig LR, Giacomini KM (2010) Role of the copper transporter, CTR1, in platinum-induced ototoxicity. J Neurosci 30:9500–9509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstadt H, Lanvers-Kaminsky C, am Zehnhoff-Dinnesen A, Schinkel AH, Koepsell H, Jurgens H, Schlatter E (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176:1169–1180

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072

    Article  PubMed  CAS  Google Scholar 

  9. Mukherjea D, Jajoo S, Kaur T, Sheehan KE, Ramkumar V, Rybak LP (2010) Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antioxid Redox Signal 13:589–598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Lee JS, Kang SU, Hwang HS, Pyun JH, Choung YH, Kim CH (2010) Epicatechin protects the auditory organ by attenuating cisplatin-induced ototoxicity through inhibition of ERK. Toxicol Lett 199:308–316

    Article  PubMed  CAS  Google Scholar 

  11. Mukherjea D, Rybak LP (2011) Pharmacogenomics of cisplatin-induced ototoxicity. Pharmacogenomics 12:1039–1050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Devarajan P, Savoca M, Castaneda MP, Park MS, Esteban-Cruciani N, Kalinec G, Kalinec F (2002) Cisplatin-induced apoptosis in auditory cells: role of death receptor and mitochondrial pathways. Hear Res 174:45–54

    Article  PubMed  CAS  Google Scholar 

  13. Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC (2003) Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83:1359–1400

    PubMed  CAS  Google Scholar 

  14. Sohl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–180

    Article  PubMed  Google Scholar 

  15. Krutovskikh VA, Piccoli C, Yamasaki H (2002) Gap junction intercellular communication propagates cell death in cancerous cells. Oncogene 21:1989–1999

    Article  PubMed  CAS  Google Scholar 

  16. Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M (2004) Gap junction-mediated spread of cell injury and death during myocardial ischemia-reperfusion. Cardiovasc Res 61:386–401

    Article  PubMed  CAS  Google Scholar 

  17. Farahani R, Pina-Benabou MH, Kyrozis A, Siddiq A, Barradas PC, Chiu FC, Cavalcante LA, Lai JC, Stanton PK, Rozental R (2005) Alterations in metabolism and gap junction expression may determine the role of astrocytes as “good Samaritans” or executioners. Glia 50:351–361

    Article  PubMed  Google Scholar 

  18. Carrio M, Mazo A, Lopez-Iglesias C, Estivill X, Fillat C (2001) Retrovirus-mediated transfer of the herpes simplex virus thymidine kinase and connexin26 genes in pancreatic cells results in variable efficiency on the bystander killing: implications for gene therapy. Int J Cancer 94:81–88

    Article  PubMed  CAS  Google Scholar 

  19. Sun P, Liu Y, Ying H, Li S (2012) Action of db-cAMP on the bystander effect and chemosensitivity through connexin 43 and Bcl-2-mediated pathways in medulloblastoma cells. Oncol Rep 28:969–976

    PubMed  CAS  Google Scholar 

  20. Garcia-Rodriguez L, Perez-Torras S, Carrio M, Cascante A, Garcia-Ribas I, Mazo A, Fillat C (2011) Connexin-26 is a key factor mediating gemcitabine bystander effect. Mol Cancer Ther 10:505–517

    Article  PubMed  CAS  Google Scholar 

  21. Blanc EM, Bruce-Keller AJ, Mattson MP (1998) Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death. J Neurochem 70:958–970

    Article  PubMed  CAS  Google Scholar 

  22. Giaume C, Froger N, Koulakoff A (2005) Gap junction-mediated intercellular communication in astrocytes and neuroprotection. Ann Fr Anesth Reanim 24:695–696

    Article  PubMed  CAS  Google Scholar 

  23. Perez Velazquez JL, Frantseva MV, Naus CC (2003) Gap junctions and neuronal injury: protectants or executioners? Neuroscientist 9:5–9

    Article  PubMed  CAS  Google Scholar 

  24. Ahmad S, Chen S, Sun J, Lin X (2003) Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun 307:362–368

    Article  PubMed  CAS  Google Scholar 

  25. Suzuki T, Takamatsu T, Oyamada M (2003) Expression of gap junction protein connexin43 in the adult rat cochlea: comparison with connexin26. J Histochem Cytochem 51:903–912

    Article  PubMed  CAS  Google Scholar 

  26. Zdebik AA, Wangemann P, Jentsch TJ (2009) Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda) 24:307–316

    Article  CAS  Google Scholar 

  27. Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC (2000) Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 32:163–166

    Article  PubMed  CAS  Google Scholar 

  28. Kikuchi T, Adams JC, Miyabe Y, So E, Kobayashi T (2000) Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc 33:51–56

    Article  PubMed  CAS  Google Scholar 

  29. Chang Q, Tang W, Ahmad S, Zhou B, Lin X (2008) Gap junction-mediated intercellular metabolite transfer in the cochlea is compromised in connexin30 null mice. PLoS ONE 3:e4088

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhao HB, Kikuchi T, Ngezahayo A, White TW (2006) Gap junctions and cochlear homeostasis. J Membr Biol 209:177–186

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Gossman DG, Zhao HB (2008) Hemichannel-mediated inositol 1,4,5-trisphosphate (IP3) release in the cochlea: a novel mechanism of IP3 intercellular signaling. Cell Commun Adhes 15:305–315

    Article  PubMed  CAS  Google Scholar 

  32. Zhao HB, Yu N, Fleming CR (2005) Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci USA 102:18724–18729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Kudo T, Kure S, Ikeda K, Xia AP, Katori Y, Suzuki M, Kojima K, Ichinohe A, Suzuki Y, Aoki Y, Kobayashi T, Matsubara Y (2003) Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness. Hum Mol Genet 12:995–1004

    Article  PubMed  CAS  Google Scholar 

  34. Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Söhl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (2003) Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12:13–21

    Article  PubMed  CAS  Google Scholar 

  35. Chi SS, Rattner JB, Sciore P, Boorman R, Lo IK (2005) Gap junctions of the medial collateral ligament: structure, distribution, associations and function. J Anat 207:145–154

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Decrock E, Vinken M, De Vuyst E, Krysko DV, D’Herde K, Vanhaecke T, Vandenabeele P, Rogiers V, Leybaert L (2009) Connexin-related signaling in cell death: to live or let die? Cell Death Differ 16:524–536

    Article  PubMed  CAS  Google Scholar 

  37. Lampe PD, Kistler J, Hefti A, Bond J, Muller S, Johnson RG, Engel A (1991) In vitro assembly of gap junctions. J Struct Biol 107:281–290

    Article  PubMed  CAS  Google Scholar 

  38. Imanaga I, Hai L, Ogawa K, Matsumura K, Mayama T (2004) Phosphorylation of connexin in functional regulation of the cardiac gap junction. Exp Clin Cardiol 9:161–164

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849

    Article  PubMed  CAS  Google Scholar 

  40. Patel SJ, Milwid JM, King KR, Bohr S, Iracheta-Velle A, Li M, Vitalo A, Parekkadan B, Jindal R, Yarmush ML (2012) Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. Nat Biotechnol 30:179–183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Fillat C, Carrio M, Cascante A, Sangro B (2003) Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther 3:13–26

    Article  PubMed  CAS  Google Scholar 

  42. Hong X, Wang Q, Yang Y, Zheng S, Tong X, Zhang S, Tao L, Harris AL (2012) Gap junctions propagate opposite effects in normal and tumor testicular cells in response to cisplatin. Cancer Lett 317:165–171

    Article  PubMed  CAS  Google Scholar 

  43. Rong Y, Distelhorst CW (2008) Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70:73–91

    Article  PubMed  CAS  Google Scholar 

  44. Little JB, Azzam EI, de Toledo SM, Nagasawa H (2002) Bystander effects: intercellular transmission of radiation damage signals. Radiat Prot Dosim 99:159–162

    Article  CAS  Google Scholar 

  45. Krysko DV, Leybaert L, Vandenabeele P, D’Herde K (2005) Gap junctions and the propagation of cell survival and cell death signals. Apoptosis 10:459–469

    Article  PubMed  CAS  Google Scholar 

  46. Jaramillo F (1995) Signal transduction in hair cells and its regulation by calcium. Neuron 15:1227–1230

    Article  PubMed  CAS  Google Scholar 

  47. Rivolta MN, Holley MC (2002) Cell lines in inner ear research. J Neurobiol 53:306–318

    Article  PubMed  Google Scholar 

  48. Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol 191:101–118

    Article  PubMed  CAS  Google Scholar 

  49. Forge A, Becker D, Casalotti S, Edwards J, Marziano N, Nevill G (2003) Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessment of connexin composition in mammals. J Comp Neurol 467:207–231

    Article  PubMed  Google Scholar 

  50. Zhao HB, Yu N (2006) Distinct and gradient distributions of connexin26 and connexin30 in the cochlear sensory epithelium of guinea pigs. J Comp Neurol 499:506–518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Ramirez-Camacho R, Garcia-Berrocal JR, Bujan J, Martin-Marero A, Trinidad A (2004) Supporting cells as a target of cisplatin-induced inner ear damage: therapeutic implications. Laryngoscope 114:533–537

    Article  PubMed  CAS  Google Scholar 

  52. Lahne M, Gale JE (2008) Damage-induced activation of ERK1/2 in cochlear supporting cells is a hair cell death-promoting signal that depends on extracellular ATP and calcium. J Neurosci 28:4918–4928

    Article  PubMed  CAS  Google Scholar 

  53. Ivanov AI, Nusrat A, Parkos CA (2005) Endocytosis of the apical junctional complex: mechanisms and possible roles in regulation of epithelial barriers. BioEssays 27:356–365

    Article  PubMed  CAS  Google Scholar 

  54. Laird DW (2005) Connexin phosphorylation as a regulatory event linked to gap junction internalization and degradation. Biochim Biophys Acta 1711:172–182

    Article  PubMed  CAS  Google Scholar 

  55. Ikeda S, Fukuzaki A, Kaneto H, Ishidoya S, Orikasa S (1999) Role of protein kinase C in cisplatin nephrotoxicity. Int J Urol 6:245–250

    Article  PubMed  CAS  Google Scholar 

  56. Kharbanda S, Yuan ZM, Taneja N, Weichselbaum R, Kufe D (1994) p56/p53lyn tyrosine kinase activation in mammalian cells treated with mitomycin C. Oncogene 9:3005–3011

    PubMed  CAS  Google Scholar 

  57. Li W, Melton DW (2012) Cisplatin regulates the MAPK kinase pathway to induce increased expression of DNA repair gene ERCC1 and increase melanoma chemoresistance. Oncogene 31:2412–2422

    Article  PubMed  CAS  Google Scholar 

  58. Basu A, Krishnamurthy S (2010) Cellular responses to cisplatin-induced DNA damage. J Nucleic Acids 2010

  59. Hu P, Han Z, Couvillon AD, Exton JH (2004) Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem 279:49420–49429

    Article  PubMed  CAS  Google Scholar 

  60. Choi BM, Lim DW, Lee JA, Gao SS, Kwon DY, Kim BR (2008) Luteolin suppresses cisplatin-induced apoptosis in auditory cells: possible mediation through induction of heme oxygenase-1 expression. J Med Food 11:230–236

    Article  PubMed  CAS  Google Scholar 

  61. Yao J, Huang T, Fang X, Chi Y, Zhu Y, Wan Y, Matsue H, Kitamura M (2010) Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury. Br J Pharmacol 160:2055–2068

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Cho JH, Cho SD, Hu H, Kim SH, Lee SK, Lee YS, Kang KS (2002) The roles of ERK1/2 and p38 MAP kinases in the preventive mechanisms of mushroom Phellinus linteus against the inhibition of gap junctional intercellular communication by hydrogen peroxide. Carcinogenesis 23:1163–1169

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education Science and Technology (2010-0010678).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hoon Choung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 444 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y.J., Kim, J., Tian, C. et al. Prevention of cisplatin-induced ototoxicity by the inhibition of gap junctional intercellular communication in auditory cells. Cell. Mol. Life Sci. 71, 3859–3871 (2014). https://doi.org/10.1007/s00018-014-1594-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1594-3

Keywords

Navigation