Skip to main content

Advertisement

Log in

Regulation of organogenesis and stem cell properties by T-box transcription factors

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

T-box transcription factors containing the common DNA-binding domain T-box contribute to the organization of multiple tissues in vertebrates and invertebrates. In mammals, 17 T-box genes are divided into five subfamilies depending on their amino acid homology. The proper distribution and expression of individual T-box transcription factors in different tissues enable regulation of the proliferation and differentiation of tissue-specific stem cells and progenitor cells in a suitable time schedule for tissue organization. Consequently, uncontrollable expressions of T-box genes induce abnormal tissue organization, and eventually cause various diseases with malformation and malfunction of tissues and organs. Furthermore, some T-box transcription factors are essential for maintaining embryonic stem cell pluripotency, improving the quality of induced pluripotent stem cells, and inducing cell-lineage conversion of differentiated cells. These lines of evidence indicate fundamental roles of T-box transcription factors in tissue organization and stem cell properties, and suggest that these transcription factors will be useful for developing therapeutic approaches in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kispert A, Herrmann BG (1993) The Brachyury gene encodes a novel DNA binding protein. EMBO J 12:3211–3220

    PubMed  CAS  Google Scholar 

  2. Müller CW, Herrmann BG (1997) Crystallographic structure of the T domain-DNA complex of the Brachyury transcription factor. Nature 389:884–888

    PubMed  Google Scholar 

  3. Gluecksohn-Schoenheimer S (1938) The development of two tailless mutants in the house mouse. Genetics 23:573–584

    PubMed  CAS  Google Scholar 

  4. Herrmann BG, Labeit S, Poustka A, King TR, Lehrach H (1990) Cloning of the T gene required in mesoderm formation in the mouse. Nature 343:617–622

    PubMed  CAS  Google Scholar 

  5. Wilkinson DG, Bhatt S, Herrmann BG (1990) Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343:657–659

    PubMed  CAS  Google Scholar 

  6. Rivera-Perez J, Magnuson T (2005) Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev Biol 288:363–371

    PubMed  CAS  Google Scholar 

  7. Wilson D, Sheng D, Lecuit T, Dostatni N, Desplan C (1993) Cooperative dimerization of paired class homeo domains on DNA. Genes Dev 7:2120–2134

    PubMed  CAS  Google Scholar 

  8. Coll M, Seidman JG, Müller CW (2002) Structure of the DNA-bound T-box domain of human TBX3, a transcription factor responsible for ulnar-mammary syndrome. Structure 10:343–356

    PubMed  CAS  Google Scholar 

  9. El Omari K, De Mesmaeker J, Karia D, Ginn H, Bhattacharya S, Mancini EJ (2011) Structure of the DNA-bound T-box domain of human TBX1, a transcription factor associated with the DiGeorge syndrome. Proteins 80:655–660

    Google Scholar 

  10. Stirnimann CU, Ptchelkine D, Grimm C, Müller CW (2010) Structural basis of TBX5-DNA recognition: the T-box domain in its DNA-bound and -unbound form. J Mol Biol 400:71–81

    PubMed  CAS  Google Scholar 

  11. Naiche LA, Harrelson Z, Kelly RG, Papaioannou VE (2005) T-box genes in vertebrate development. Annu Rev Genet 39:219–239

    PubMed  CAS  Google Scholar 

  12. Callery EM, Thomsen GH, Smith JC (2010) A divergent Tbx6-related gene and Tbx6 are both required for neural crest and intermediate mesoderm development in Xenopus. Dev Biol 340:75–87

    PubMed  CAS  Google Scholar 

  13. Tazumi S, Yabe S, Uchiyama H (2010) Paraxial T-box genes, Tbx6 and Tbx1, are required for cranial chondrogenesis and myogenesis. Dev Biol 346:170–180

    PubMed  CAS  Google Scholar 

  14. Chapman DL, Papaioannou VE (1998) Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature 391:695–697

    PubMed  CAS  Google Scholar 

  15. Tazumi S, Yabe S, Yokoyama J, Aihara Y, Uchiyama H (2008) pMesogenin1 and 2 function directly downstream of Xtbx6 in Xenopus somitogenesis and myogenesis. Dev Dyn 237:3749–3761

    PubMed  CAS  Google Scholar 

  16. Bush JO, Maltby KM, Cho ES, Jiang R (2003) The T-box gene Tbx10 exhibits a uniquely restricted expression pattern during mouse embryogenesis. Gene Expr Patterns 3:533–538

    PubMed  CAS  Google Scholar 

  17. Xue XD, Kimura W, Wang B, Hikosaka K, Itakura T, Uezato T, Matsuda M, Koseki H, Miura N (2010) A unique expression pattern of Tbx10 in the hindbrain as revealed by Tbx10(LacZ) allele. Genesis 48:295–302

    PubMed  CAS  Google Scholar 

  18. Langlais D, Couture C, Sylvain-Drolet G, Drouin J (2011) A pituitary-specific enhancer of the POMC gene with preferential activity in corticotrope cells. Mol Endocrinol 25:348–359

    PubMed  CAS  Google Scholar 

  19. Budry L, Lafont C, El Yandouzi T, Chauvet N, Conéjero G, Drouin J, Mollard P (2011) Related pituitary cell lineages develop into interdigitated 3D cell networks. Proc Natl Acad Sci USA 108:12515–12520

    PubMed  CAS  Google Scholar 

  20. Hevner RF, Hodge RD, Daza RA, Englund C (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55:223–233

    PubMed  CAS  Google Scholar 

  21. Hodge RD, Kowalczyk TD, Wolf SA, Encinas JM, Rippey C, Enikolopov G, Kempermann G, Hevner RF (2008) Intermediate progenitors in adult hippocampal neurogenesis: tbr2 expression and coordinate regulation of neuronal output. J Neurosci 28:3707–3717

    PubMed  CAS  Google Scholar 

  22. Arnold SJ, Huang GJ, Cheung AF, Era T, Nishikawa S, Bikoff EK, Molnár Z, Robertson EJ, Groszer M (2008) The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev 22:2479–2484

    PubMed  CAS  Google Scholar 

  23. Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60:56–69

    PubMed  CAS  Google Scholar 

  24. Roybon L, Deierborg T, Brundin P, Li JY (2009) Involvement of Ngn2, Tbr and NeuroD proteins during postnatal olfactory bulb neurogenesis. Eur J Neurosci 29:232–243

    PubMed  Google Scholar 

  25. Brill MS, Ninkovic J, Winpenny E, Hodge RD, Ozen I, Yang R, Lepier A, Gascón S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner RF, Raineteau O, Götz M (2009) Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci 12:1524–1533

    PubMed  CAS  Google Scholar 

  26. Senturker S, Thomas JT, Mateshaytis J, Moos M Jr (2012) A homolog of subtilisin-like proprotein convertase 7 is essential to anterior neural development in Xenopus. PLoS ONE 7:e39380

    PubMed  CAS  Google Scholar 

  27. Fong SH, Emelyanov A, Teh C, Korzh V (2005) Wnt signalling mediated by Tbx2b regulates cell migration during formation of the neural plate. Development 132:3587–3596

    PubMed  CAS  Google Scholar 

  28. Carson CT, Kinzler ER, Parr BA (2000) Tbx12, a novel T-box gene, is expressed during early stages of heart and retinal development. Mech Dev 96:137–140

    PubMed  CAS  Google Scholar 

  29. Hadjantonakis AK, Pisano E, Papaioannou VE (2008) Tbx6 regulates left/right patterning in mouse embryos through effects on nodal cilia and perinodal signaling. PLoS ONE 3:e2511

    PubMed  Google Scholar 

  30. Hoogaars WM, Barnett P, Moorman AF, Christoffels VM (2007) T-box factors determine cardiac design. Cell Mol Life Sci 64:646–660

    PubMed  CAS  Google Scholar 

  31. Greulich F, Rudat C, Kispert A (2011) Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 91:212–222

    PubMed  CAS  Google Scholar 

  32. Horb M, Thomsen G (1999) Tbx5 is essential for heart development. Development 126:1739–1751

    PubMed  CAS  Google Scholar 

  33. Costello I, Pimeisl IM, Dräger S, Bikoff EK, Robertson EJ, Arnold SJ (2011) The T-box transcription factor eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat Cell Biol 13:1084–1091

    PubMed  CAS  Google Scholar 

  34. Vitelli F, Taddei I, Morishima M, Meyers EN, Lindsay EA, Baldini A (2002) A genetic link between Tbx1 and fibroblast growth factor signaling. Development 129:4605–4611

    PubMed  CAS  Google Scholar 

  35. Chieffo C, Garvey N, Gong W, Roe B, Zhang G, Silver L, Emanuel BS, Budarf ML (1997) Isolation and characterization of a gene from the DiGeorge chromosomal region homologous to the mouse Tbx1 gene. Genomics 43:267–277

    PubMed  CAS  Google Scholar 

  36. Parisot P, Mesbah K, Théveniau-Ruissy M, Kelly RG (2011) Tbx1, subpulmonary myocardium and conotruncal congenital heart defects. Birth Defects Res A Clin Mol Teratol 91:477–484

    PubMed  CAS  Google Scholar 

  37. Watanabe Y, Zaffran S, Kuroiwa A, Higuchi H, Ogura T, Harvey RP, Kelly RG, Buckingham M (2012) Fibroblast growth factor 10 gene regulation in the second heart field by Tbx1, Nk2–5, and Islet1 reveals a genetic switch for down-regulation in the myocardium. Proc Natl Acad Sci USA 109:18273–18280

    PubMed  CAS  Google Scholar 

  38. Chen L, Fulcoli FG, Ferrentino R, Martucciello S, Illingworth EA, Baldini A (2012) Transcriptional control in cardiac progenitors: tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a. PLoS Genet 8:e1002571

    PubMed  CAS  Google Scholar 

  39. Maitra M, Schluterman MK, Nichols HA, Richardson JA, Lo CW, Srivastava D, Garg V (2009) Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Dev Biol 326:368–377

    PubMed  CAS  Google Scholar 

  40. Singh R, Kispert A (2010) Tbx20, Smads, and the atrioventricular canal. Trends Cardiovasc Med 20:109–114

    PubMed  CAS  Google Scholar 

  41. Boogerd CJ, Moorman AF, Barnett P (2009) Protein interactions at the heart of cardiac chamber formation. Ann Anat 191:505–517

    PubMed  CAS  Google Scholar 

  42. Singh MK, Christoffels VM, Dias JM, Trowe MO, Petry M, Schuster-Gossler K, Bürger A, Ericson J, Kispert A (2005) Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development 132:2697–2707

    PubMed  CAS  Google Scholar 

  43. Iio A, Koide M, Hidaka K, Morisaki T (2011) Expression pattern of novel chick T-box gene, Tbx20. Dev Genes Evol 211:559–562

    Google Scholar 

  44. Chakraborty S, Yutzey KE (2012) Tbx20 regulation of cardiac cell proliferation and lineage specialization during embryonic and fetal development in vivo. Dev Biol 363:234–246

    PubMed  CAS  Google Scholar 

  45. Cai X, Nomura-Kitabayashi A, Cai W, Yan J, Christoffels VM, Cai CL (2011) Myocardial Tbx20 regulates early atrioventricular canal formation and endocardial epithelial–mesenchymal transition via Bmp2. Dev Biol 360:381–390

    PubMed  CAS  Google Scholar 

  46. Szeto D, Griffin K, Kimelman D (2002) hrT is required for cardiovascular development in zebrafish. Development 129:5093–5101

    PubMed  CAS  Google Scholar 

  47. Takeuchi JK, Ohgi M, Koshiba-Takeuchi K, Shiratori H, Sakaki I, Ogura K, Saijoh Y, Ogura T (2003) Tbx5 specifies the left/right ventricles and ventricular septum position during cardiogenesis. Development 130:5953–5964

    PubMed  CAS  Google Scholar 

  48. Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11:723–732

    PubMed  CAS  Google Scholar 

  49. Christoffels VM, Hoogaars WMH, Tessari A, Clout DEW, Moorman AFM, Campione M (2004) Tbox transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn 229:763–770

    PubMed  CAS  Google Scholar 

  50. Harrelson Z, Kelly RG, Goldin SN, Gibson-Brown JJ, Bollag RJ, Silver LM, Papaioannou VE (2004) Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development 131:5041–5052

    PubMed  CAS  Google Scholar 

  51. Hoogaars WM, Tessari A, Moorman AF, de Boer PA, Hagoort J, Soufan AT, Campione M, Christoffels VM (2004) The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res 62:489–499

    PubMed  CAS  Google Scholar 

  52. Mesbah K, Harrelson Z, Théveniau-Ruissy M, Papaioannou VE, Kelly RG (2008) Tbx3 is required for outflow tract development. Circ Res 103:743–750

    PubMed  CAS  Google Scholar 

  53. Bakker ML, Boukens BJ, Mommersteeg MT, Brons JF, Wakker V, Moorman AF, Christoffels VM (2008) Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ Res 102:1340–1349

    PubMed  CAS  Google Scholar 

  54. King M, Arnold JS, Shanske A, Morrow BE (2006) T-genes and limb bud development. Am J Med Genet A 140:1407–1413

    PubMed  Google Scholar 

  55. Liu C, Nakamura E, Knezevic V, Hunter S, Thompson K, Mackem S (2003) A role for the mesenchymal T-box gene Brachyury in AER formation during limb development. Development 130:1327–1337

    PubMed  CAS  Google Scholar 

  56. Suzuki T, Takeuchi J, Koshiba-Takeuchi K, Ogura T (2004) Tbx genes specify posterior digit identity through Shh and BMP signaling. Dev Cell 6:43–53

    PubMed  CAS  Google Scholar 

  57. Fisher M, Downie H, Welten MC, Delgado I, Bain A, Planzer T, Sherman A, Sang H, Tickle C (2011) Comparative analysis of 3D expression patterns of transcription factor genes and digit fate maps in the developing chick wing. PLoS ONE 6:e18661

    PubMed  CAS  Google Scholar 

  58. Ballim RD, Mendelsohn C, Papaioannou VE, Prince S (2012) The ulnar-mammary syndrome gene, Tbx3, is a direct target of the retinoic acid signaling pathway, which regulates its expression during mouse limb development. Mol Biol Cell 23:2362–2372

    PubMed  CAS  Google Scholar 

  59. Gibson-Brown J, Agulnik S, Silver L, Niswander L, Papaioannou V (1998) Involvement of T-box genes Tbx2–Tbx5 in vertebrate limb specification and development. Development 125:2499–2509

    PubMed  CAS  Google Scholar 

  60. Takeuchi JK, Koshiba-Takeuchi K, Suzuki T, Kamimura M, Ogura K, Ogura T (2003) Tbx5 and Tbx4 trigger limb initiation through activation of the Wnt/Fgf signaling cascade. Development 130:2729–2739

    PubMed  CAS  Google Scholar 

  61. Sun X, Mariani FV, Martin GR (2002) Functions of FGF signaling from the apical ectodermal ridge in limb development. Nature 418:501–508

    PubMed  CAS  Google Scholar 

  62. Agarwal P, Wylie JN, Galceran J, Arkhitko O, Li C, Deng C, Grosschedl R, Bruneau BG (2003) Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development 130:623–633

    PubMed  CAS  Google Scholar 

  63. Duboc V, Logan MP (2011) Regulation of limb bud initiation and limb-type morphology. Dev Dyn 240:1017–1027

    PubMed  CAS  Google Scholar 

  64. Agulnik SI, Papaioannou VE, Silver LM (1998) Cloning, mapping, and expression analysis of TBX15, a new member of the T-box gene family. Genomics 51:68–75

    PubMed  CAS  Google Scholar 

  65. Kraus F, Haenig B, Kispert A (2001) Cloning and expression analysis of the mouse T-box gene Tbx18. Mech Dev 100:83–86

    PubMed  CAS  Google Scholar 

  66. Haenig B, Kispert A (2004) Analysis of TBX18 expression in chick embryos. Dev Genes Evol 214:407–411

    PubMed  CAS  Google Scholar 

  67. Singh MK, Petry M, Haenig B, Lescher B, Leitges M, Kispert A (2005) The T-box transcription factor Tbx15 is required for skeletal development. Mech Dev 122:131–144

    PubMed  CAS  Google Scholar 

  68. Shou S, Scott V, Reed C, Hitzemann R, Stadler HS (2005) Transcriptome analysis of the murine forelimb and hindlimb autopod. Dev Dyn 234:74–89

    PubMed  CAS  Google Scholar 

  69. Zaret KS, Grompe M (2008) Generation and regeneration of cells of the liver and pancreas. Science 322:1490–1494

    PubMed  CAS  Google Scholar 

  70. Suzuki A, Sekiya S, Büscher D, Izpisúa Belmonte JC, Taniguchi H (2008) Tbx3 controls the fate of hepatic progenitor cells in liver development by suppressing p19ARF expression. Development 135:1589–1595

    PubMed  CAS  Google Scholar 

  71. Suzuki A, Zheng YW, Kaneko S, Onodera M, Fukao K, Nakauchi H, Taniguchi H (2002) Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J Cell Biol 156:173–184

    PubMed  CAS  Google Scholar 

  72. Lüdtke TH, Christoffels VM, Petry M, Kispert A (2009) Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology 49:969–978

    PubMed  Google Scholar 

  73. Aoki R, Chiba T, Miyagi S, Negishi M, Konuma T, Taniguchi H, Ogawa M, Yokosuka O, Iwama A (2010) The Polycomb group gene product Ezh2 regulates proliferation and differentiation of murine hepatic stem/progenitor cells. J Hepatol 52:854–863

    PubMed  CAS  Google Scholar 

  74. Begum S, Papaioannou VE (2011) Dynamic expression of Tbx2 and Tbx3 in developing mouse pancreas. Gene Expr Patterns 11:476–483

    PubMed  CAS  Google Scholar 

  75. Russ AP, Wattler S, Colledge WH, Aparicio SA, Carlton MB, Pearce JJ, Barton SC, Surani MA, Ryan K, Nehls MC, Wilson V, Evans MJ (2000) Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404:95–99

    PubMed  CAS  Google Scholar 

  76. Teo AK, Arnold SJ, Trotter MW, Brown S, Ang LT, Chng Z, Robertson EJ, Dunn NR, Vallier L (2011) Pluripotency factors regulate definitive endoderm specification through eomesodermin. Genes Dev 25:238–250

    PubMed  CAS  Google Scholar 

  77. Suzuki A, Raya A, Kawakami Y, Morita M, Matsui T, Nakashima K, Gage FH, Rodriguez-Esteban C, Belmonte JC (2006) Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification. Nat Clin Pract Cardiovasc Med 3:S114–S122

    PubMed  CAS  Google Scholar 

  78. Suzuki A, Raya A, Kawakami Y, Morita M, Matsui T, Nakashima K, Gage FH, Rodríguez-Esteban C, Izpisúa Belmonte JC (2006) Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc Natl Acad Sci USA 103:10294–10299

    PubMed  CAS  Google Scholar 

  79. Chen T, Heller E, Beronja S, Oshimori N, Stokes N, Fuchs E (2012) An RNA interference screen uncovers a new molecule in stem cell self-renewal and long-term regeneration. Nature 485:104–108

    PubMed  CAS  Google Scholar 

  80. Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460:118–122

    PubMed  CAS  Google Scholar 

  81. Lanner F, Lee KL, Sohl M, Holmborn K, Yang H, Wilbertz J, Poellinger L, Rossant J, Farnebo F (2010) Heparan sulfation-dependent fibroblast growth factor signaling maintains embryonic stem cells primed for differentiation in a heterogeneous state. Stem Cells 28:191–200

    PubMed  CAS  Google Scholar 

  82. Pirity MK, Dinnyes A (2010) Tbx3: another important piece fitted into the pluripotent stem cell puzzle. Stem Cell Res Ther 1:12

    PubMed  Google Scholar 

  83. Han J, Yuan P, Yang H, Zhang J, Soh BS, Li P, Lim SL, Cao S, Tay J, Orlov YL, Lufkin T, Ng HH, Tam WL, Lim B (2010) Tbx3 improves the germ-line competency of induced pluripotent stem cells. Nature 463:1096–1110

    PubMed  CAS  Google Scholar 

  84. Washkowitz AJ, Gavrilov S, Begum S, Papaioannou VE (2012) Diverse functional networks of Tbx3 in development and disease. Wiley Interdiscip Rev Syst Biol Med 4:273–283

    PubMed  CAS  Google Scholar 

  85. Lu R, Yang A, Jin YJ (2011) Dual functions of T-box 3 (Tbx3) in the control of self-renewal and extraembryonic endoderm differentiation in mouse embryonic stem cells. Biol Chem 286:8425–8436

    CAS  Google Scholar 

  86. Berninger B, Guillemot F, Götz M (2007) Directing neurotransmitter identity of neurones derived from expanded adult neural stem cells. Eur J Neurosci 25:2581–2590

    PubMed  Google Scholar 

  87. Méndez-Gómez HR, Vergaño-Vera E, Abad JL, Bulfone A, Moratalla R, de Pablo F, Vicario-Abejón C (2011) The T-box brain 1 (Tbr1) transcription factor inhibits astrocyte formation in the olfactory bulb and regulates neural stem cell fate. Mol Cell Neurosci 46:108–121

    PubMed  Google Scholar 

  88. Winpenny E, Lebel-Potter M, Fernandez ME, Brill MS, Götz M, Guillemot F, Raineteau O (2011) Sequential generation of olfactory bulb glutamatergic neurons by Neurog2-expressing precursor cells. Neural Dev 6:12

    PubMed  Google Scholar 

  89. Kishimoto N, Shimizu K, Sawamoto K (2012) Neuronal regeneration in a zebrafish model of adult brain injury. Dis Model Mech 5:200–209

    PubMed  CAS  Google Scholar 

  90. Greulich F, Rudat C, Kispert A (2011) Mechanisms of T-box gene function in the developing heart. Cardiovasc Res 91:212–222

    PubMed  CAS  Google Scholar 

  91. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, Jiang D, von Gise A, Ikeda S, Chien KR, Pu WT (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–113

    PubMed  CAS  Google Scholar 

  92. Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup WB, Denton CP, McCulloch A, Chen J, Evans SM (2008) A myocardial lineage derives from Tbx18 epicardial cells. Nature 454:104–108

    PubMed  CAS  Google Scholar 

  93. Zhang X, Guo JP, Chi YL, Liu YC, Zhang CS, Yang XQ, Lin HY, Jiang EP, Xiong SH, Zhang ZY, Liu BH (2012) Endothelin-induced differentiation of Nkx2.5(+) cardiac progenitor cells into pacemaking cells. Mol Cell Biochem 366:309–318

    PubMed  CAS  Google Scholar 

  94. Takeuchi JK, Bruneau BG (2009) Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 459:708–711

    PubMed  CAS  Google Scholar 

  95. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386

    PubMed  CAS  Google Scholar 

  96. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604

    PubMed  CAS  Google Scholar 

  97. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–598

    PubMed  CAS  Google Scholar 

  98. Bakker ML, Boink GJ, Boukens BJ, Verkerk AO, van den Boogaard M, den Haan AD, Hoogaars WM, Buermans HP, de Bakker JM, Seppen J, Tan HL, Moorman AF, ‘t Hoen PA, Christoffels VM (2012) T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc Res 94:439–449

    PubMed  CAS  Google Scholar 

  99. Baron V, Adamson ED, Calogero A, Ragona G, Mercola D (2006) The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther 13:115–124

    PubMed  CAS  Google Scholar 

  100. Lee HS, Cho HH, Kim HK, Bae YC, Baik HS, Jung JS (2006) Tbx3, a transcriptional factor, involves in proliferation and osteogenic differentiation of human adipose stromal cells. Mol Cell Biochem 296:129–130

    PubMed  Google Scholar 

  101. Yarosh W, Barrientos T, Esmailpour T, Lin L, Carpenter PM, Osann K, Anton-Culver H, Huang T (2008) TBX3 is overexpressed in breast cancer and represses p14 ARF by interacting with histone deacetylases. Cancer Res 68:693–699

    PubMed  CAS  Google Scholar 

  102. Lu J, Li XP, Dong Q, Kung HF, He ML (2010) TBX2 and TBX3: the special value for anticancer drug targets. Biochim Biophys Acta 1806:268–274

    PubMed  CAS  Google Scholar 

  103. Rodriguez M, Aladowicz E, Lanfrancone L, Goding CR (2008) Tbx3 represses E-cadherin expression and enhances melanoma invasiveness. Cancer Res 68:7872–7881

    PubMed  CAS  Google Scholar 

  104. Rodriguez M, Aladowicz E, Lanfrancone L, Goding CR (2008) Tbx3 represses E-cadherin expression and enhances melanoma invasiveness. Cancer Res 68:7872–7881

    PubMed  CAS  Google Scholar 

  105. Bosserhoff AK, Ellmann L, Kuphal S (2011) Melanoblasts in culture as an in vitro system to determine molecular changes in melanoma. Exp Dermatol 20:435–440

    PubMed  CAS  Google Scholar 

  106. Peres J, Davis E, Mowla S, Bennett DC, Li JA, Wansleben S, Prince S (2010) The highly homologous T-box transcription factors, TBX2 and TBX3, have distinct roles in the oncogenic process. Genes Cancer 1:272–282

    PubMed  CAS  Google Scholar 

  107. Abrahams A, Mowla S, Parker MI, Goding CR, Prince S (2008) UV-mediated regulation of the anti-senescence factor Tbx2. J Biol Chem 283:2223–2230

    PubMed  CAS  Google Scholar 

  108. Mowla S, Pinnock R, Leaner VD, Goding CR, Prince S (2011) PMA-induced up-regulation of TBX3 is mediated by AP-1 and contributes to breast cancer cell migration. Biochem J 433:145–153

    PubMed  CAS  Google Scholar 

  109. Fan W, Huang X, Chen C, Gray J, Huang T (2004) TBX3 and its isoform TBX3+2a are functionally distinctive in inhibition of senescence and are overexpressed in a subset of breast cancer cell lines. Cancer Res 64:5132–5139

    PubMed  CAS  Google Scholar 

  110. Fillmore CM, Gupta PB, Rudnick JA, Caballero S, Keller PJ, Lander ES, Kuperwasser C (2010) Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci USA 107:21737–21742

    PubMed  CAS  Google Scholar 

  111. Liu J, Esmailpour T, Shang X, Gulsen G, Liu A, Huang T (2011) TBX3 over-expression causes mammary gland hyperplasia and increases mammary stem-like cells in an inducible transgenic mouse model. BMC Dev Biol 11:65

    PubMed  CAS  Google Scholar 

  112. Liu WK, Jiang XY, Zhang ZX (2010) Expression of PSCA, PIWIL1, and TBX2 in endometrial adenocarcinoma. Onkologie 33:241–245

    PubMed  CAS  Google Scholar 

  113. Roselli M, Fernando RI, Guadagni F, Spila A, Alessandroni J, Palmirotta R, Costarelli L, Litzinger M, Hamilton D, Huang B, Tucker J, Tsang KY, Schlom J, Palena C (2012) Brachyury, a driver of the epithelial–mesenchymal transition, is overexpressed in human lung tumors: an opportunity for novel interventions against lung cancer. Clin Cancer Res 18:3868–3879

    PubMed  CAS  Google Scholar 

  114. Imajyo I, Sugiura T, Kobayashi Y, Shimoda M, Ishii K, Akimoto N, Yoshihama N, Kobayashi I, Mori Y (2012) T-box transcription factor Brachyury expression is correlated with epithelial–mesenchymal transition and lymph node metastasis in oral squamous cell carcinoma. Int J Oncol 41:1985–1995

    PubMed  Google Scholar 

  115. Shimoda M, Sugiura T, Imajyo I, Ishii K, Chigita S, Seki K, Kobayashi Y, Shirasuna K (2012) The T-box transcription factor Brachyury regulates epithelial–mesenchymal transition in association with cancer stem-like cells in adenoid cystic carcinoma cells. BMC Cancer 12:377–391

    PubMed  CAS  Google Scholar 

  116. Ghoshal K, Motiwala T, Claus R, Yan P, Kutay H, Datta J, Majumder S, Bai S, Majumder A, Huang T, Plass C (2010) Jacob ST (2010) HOXB13, a target of DNMT3B, is methylated at an upstream CpG island, and functions as a tumor suppressor in primary colorectal tumors. PLoS ONE 5(4):e10338

    PubMed  Google Scholar 

  117. Yu J, Ma X, Cheung KF, Li X, Tian L, Wang S, Wu CW, Wu WK, He M, Wang M, Ng SS, Sung JJ (2010) Epigenetic inactivation of T-box transcription factor 5, a novel tumor suppressor gene, is associated with colon cancer. Oncogene 29:6464–6474

    PubMed  CAS  Google Scholar 

  118. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, Shao DD, Schumacher SE, Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP, Beroukhim R, Kuo CJ, Goessling W, Hahn WC (2012) β-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151:1457–1473

    PubMed  CAS  Google Scholar 

  119. Vieira AR, Avila JR, Daack-Hirsch S, Dragan E, Félix TM, Rahimov F, Harrington J, Schultz RR, Watanabe Y, Johnson M, Fang J, O’Brien SE, Orioli IM, Castilla EE, Fitzpatrick DR, Jiang R, Marazita ML, Murray JC (2005) Medical sequencing of candidate genes for nonsyndromic cleft lip and palate. PLoS Genet 1:e64

    PubMed  Google Scholar 

  120. Fuchs A, Inthal A, Herrmann D, Cheng S, Nakatomi M, Peters H, Neubüser A (2010) Regulation of Tbx22 during facial and palatal development. Dev Dyn 239:2860–2874

    PubMed  CAS  Google Scholar 

  121. Kaewkhampa A, Jotikasthira D, Malaivijitnond S, Kantaputra P (2012) TBX22 mutation associated with cleft lip/palate, hypodontia, and limb anomaly. Cleft Palate Craniofac J 49:240–244

    PubMed  Google Scholar 

  122. Zirzow S, Lüdtke TH, Brons JF, Petry M, Christoffels VM, Kispert A (2009) Expression and requirement of T-box transcription factors Tbx2 and Tbx3 during secondary palate development in the mouse. Dev Biol 336:145–155

    PubMed  CAS  Google Scholar 

  123. Lausch E, Hermanns P, Farin HF, Alanay Y, Unger S, Nikkel S, Steinwender C, Scherer G, Spranger J, Zabel B, Kispert A, Superti-Furga A (2008) TBX15 mutations cause craniofacial dysmorphism, hypoplasia of scapula and pelvis, and short stature in Cousin syndrome. Am J Hum Genet 83:649–655

    PubMed  CAS  Google Scholar 

  124. Jerome LA, Papaioannou VE (2001) DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat Genet 27:286–291

    PubMed  CAS  Google Scholar 

  125. Li QY, Newbury-Ecob RA, Terrett JA, Wilson DI, Curtis AR, Yi CH, Gebuhr T, Bullen PJ, Robson SC, Strachan T, Bonnet D, Lyonnet S, Young ID, Raeburn JA, Buckler AJ, Law DJ, Brook JD (1997) Holt–Oram syndrome is caused by mutations in Tbx5, a member of the Brachyury (T) gene family. Nat Genet 15:21–29

    PubMed  Google Scholar 

  126. Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, Gaussin V, Homsy C, Bartunek J, Terzic A (2010) Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 56:721–734

    PubMed  CAS  Google Scholar 

  127. Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF, Kispert A (2006) Formation of the venous pole of the heart from an Nk2–5-negative precursor population requires Tbx18. Circ Res 98:1555–1563

    PubMed  CAS  Google Scholar 

  128. Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P, Ravesloot JH, Moorman AF, Verheijck EE, Christoffels VM (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21:1098–1112

    PubMed  CAS  Google Scholar 

  129. Wiese C, Grieskamp T, Airik R, Mommersteeg MT, Gardiwal A, de Gier-Vries C, Schuster-Gossler K, Moorman AF, Kispert A, Christoffels VM (2009) Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res 104:388–397

    PubMed  CAS  Google Scholar 

  130. Bamshad M, Lin RC, Law DJ, Watkins WC, Krakowiak PA, Moore ME, Franceschini P, Lala R, Holmes LB, Gebuhr TC, Bruneau BG, Schinzel A, Seidman JG, Seidman CE, Jorde LB (1997) Mutations in human Tbx3 alter limb, apocrine and genital development in Ulnar-mammary syndrome. Nat Genet 16:311–315

    PubMed  CAS  Google Scholar 

  131. Linden H, Williams R, King J, Blair E, Kini U (2009) Ulnar mammary syndrome and TBX3: expanding the phenotype. Am J Med Genet A 149A:2809–2912

    PubMed  Google Scholar 

  132. Bongers EM, Duijf PH, van Beersum SE, Schoots J, Van Kampen A, Burckhardt A, Hamel BC, Losan F, Hoefsloot LH, Yntema HG, Knoers NV, van Bokhoven H (2004) Mutations in the human TBX4 gene cause small patella syndrome. Am J Hum Genet 74:1239–1248

    PubMed  CAS  Google Scholar 

  133. Yi BA, Wernet O, Chien KR (2010) Pregenerative medicine: developmental paradigms in the biology of cardiovascular regeneration. J Clin Invest 120:20–28

    PubMed  CAS  Google Scholar 

  134. Szeto DP, Rodriguez-Esteban C, Ryan AK, O’Connell SM, Liu F, Kioussi C, Gleiberman AS, Izpisúa-Belmonte JC, Rosenfeld MG (1999) Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13:484–494

    PubMed  CAS  Google Scholar 

  135. Tsai CC, Huang WC, Chen CL, Hsieh CY, Lin YS, Chen SH, Yang KC, Lin CF (2011) Glycogen synthase kinase-3 facilitates Con A-induced IFN-γ-mediated immune hepatic injury. J Immunol 187:3867–3877

    PubMed  CAS  Google Scholar 

  136. Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA, Intlekofer AM, Boss JM, Reiner SL, Weinmann AS, Wherry EJ (2011) Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 12:663–671

    PubMed  CAS  Google Scholar 

  137. Imanguli MM, Swaim WD, League SC, Gress RE, Pavletic SZ, Hakim FT (2009) Increased T-bet+ cytotoxic effectors and type I interferon-mediated processes in chronic graft-versus-host disease of the oral mucosa. Blood 113:3620–3630

    PubMed  CAS  Google Scholar 

  138. Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, Nguemo F, Menke S, Haustein M, Hescheler J, Hasenfuss G, Martin U (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118:507–517

    PubMed  Google Scholar 

  139. Hegazy AN, Peine M, Helmstetter C, Panse I, Fröhlich A, Bergthaler A, Flatz L, Pinschewer DD, Radbruch A, Löhning M (2010) Interferons direct Th2 cell reprogramming to generate a stable GATA-3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions. Immunity 32:116–128

    PubMed  CAS  Google Scholar 

  140. Abrahams A, Parker MI, Prince S (2010) The T-box transcription factor Tbx2: its role in development and possible implication in cancer. IUBMB Life 62:92–102

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.S. is funded by the Program for Improvement of the Research Environment for Young Researchers from the Special Coordination Funds for Promoting Science and Technology commissioned by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, a Grant-in-Aid for Scientific Research from the MEXT of Japan, a Health Labour Sciences Research Grant in Japan, the Core Research for Evolutional Science and Technology (CREST) Program of the Japan Science and Technology Agency, the Precursory Research for Embryonic Science and Technology (PRESTO) Program of the Japan Science and Technology Agency, The Uehara Memorial Foundation, The Takeda Science Foundation, and The Research Foundation for Pharmaceutical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takashima, Y., Suzuki, A. Regulation of organogenesis and stem cell properties by T-box transcription factors. Cell. Mol. Life Sci. 70, 3929–3945 (2013). https://doi.org/10.1007/s00018-013-1305-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1305-5

Keywords

Navigation