Skip to main content

Advertisement

Log in

Serotype-independent pneumococcal vaccines

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Streptococcus pneumoniae remains an important cause of disease with high mortality and morbidity, especially in children and in the elderly. The widespread use of the polysaccharide conjugate vaccines in some countries has led to a significant decrease in invasive disease caused by vaccine serotypes, but an increase in disease caused by non-vaccine serotypes has impacted on the overall efficacy of these vaccines on pneumococcal disease. The obvious solution to overcome such shortcomings would be the development of new formulations that provide serotype-independent immunity. This review focuses on the most promising approaches, including protein antigens, whole cell pneumococcal vaccines, and recombinant bacteria expressing pneumococcal antigens. The protective capacity of these vaccine candidates against the different stages of pneumococcal infection, including colonization, mucosal disease, and invasive disease in animal models is reviewed. Some of the human trials that have already been performed or that are currently ongoing are presented. Finally, the feasibility and the possible shortcomings of these candidates in relation to an ideal vaccine against pneumococcal infections are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AOM:

Acute otitis media

BAL:

Broncholaveolar lavage

CBP:

Choline-binding protein

CFA:

Complete Freund’s adjuvant

CTB:

Cholera toxin B subunit

CWPS:

Cell wall polysaccharide

DTPw :

Diphtheria, tetanus and whole cell pertussis vaccine

LAB:

Lactic acid bacteria

LT:

Escherichia coli heat labile toxin

OPA:

Opsonophagocytic killing assay

PC:

Phosphorylcholine

PCV:

Pneumococcal conjugate vaccine

PS:

Capsular polysaccharide

sIgA:

Secretory IgA

WCV:

Whole cell pneumococcal vaccine

wP:

Whole cell pertussis vaccine

References

  1. O’Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, Lee E, Mulholland K, Levine OS, Cherian T (2009) Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374(9693):893–902. doi:10.1016/S0140-6736(09)61204-6

    PubMed  Google Scholar 

  2. Calix JJ, Porambo RJ, Brady AM, Larson TR, Yother J, Abeygunwardana C, Nahm MH (2012) Biochemical, genetic, and serological characterization of two capsule subtypes among streptococcus pneumoniae serotype 20 strains: discovery of a new pneumococcal serotype. J Biol Chem 287(33):27885–27894. doi:10.1074/jbc.M112.380451

    PubMed  CAS  Google Scholar 

  3. Calix JJ, Nahm MH (2010) A new pneumococcal serotype, 11E, has a variably inactivated wcjE gene. J Infect Dis 202(1):29–38. doi:10.1086/653123

    PubMed  CAS  Google Scholar 

  4. Jin P, Kong F, Xiao M, Oftadeh S, Zhou F, Liu C, Russell F, Gilbert GL (2009) First report of putative Streptococcus pneumoniae serotype 6D among nasopharyngeal isolates from Fijian children. J Infect Dis 200(9):1375–1380. doi:10.1086/606118

    PubMed  Google Scholar 

  5. Park IH, Park S, Hollingshead SK, Nahm MH (2007) Genetic basis for the new pneumococcal serotype, 6C. Infect Immun 75(9):4482–4489. doi:10.1128/IAI.00510-07

    PubMed  CAS  Google Scholar 

  6. JCVI (Joint Committee on Vaccination and Immunisation) (2011) JCVI [Joint Committee on Vaccination and Immunisation] statement on discontinuation of the routine pneumococcal vaccination programme for adults aged 65 years and older, 2012 (02/10/2012)

  7. Trotter CL, Waight P, Andrews NJ, Slack M, Efstratiou A, George R, Miller E (2010) Epidemiology of invasive pneumococcal disease in the pre-conjugate vaccine era: England and Wales, 1996–2006. J Infect 60(3):200–208. doi:10.1016/j.jinf.2009.12.008

    PubMed  Google Scholar 

  8. Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM, Lynfield R, Reingold A, Cieslak PR, Pilishvili T, Jackson D, Facklam RR, Jorgensen JH, Schuchat A (2003) Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med 348(18):1737–1746. doi:10.1056/NEJMoa022823

    PubMed  Google Scholar 

  9. Ghaffar F, Barton T, Lozano J, Muniz LS, Hicks P, Gan V, Ahmad N, McCracken GH Jr (2004) Effect of the 7-valent pneumococcal conjugate vaccine on nasopharyngeal colonization by Streptococcus pneumoniae in the first 2 years of life. Clin Infect Dis 39(7):930–938

    PubMed  Google Scholar 

  10. Pelton SI, Loughlin AM, Marchant CD (2004) Seven valent pneumococcal conjugate vaccine immunization in two Boston communities: changes in serotypes and antimicrobial susceptibility among Streptococcus pneumoniae isolates. Pediatr Infect Dis J 23(11):1015–1022

    PubMed  Google Scholar 

  11. Moffitt KL, Gierahn TM, Lu YJ, Gouveia P, Alderson M, Flechtner JB, Higgins DE, Malley R (2011) T(H)17-based vaccine design for prevention of streptococcus pneumoniae colonization. Cell Host Microbe 9(2):158–165. doi:10.1016/j.chom.2011.01.007

    PubMed  CAS  Google Scholar 

  12. Singleton RJ, Hennessy TW, Bulkow LR, Hammitt LL, Zulz T, Hurlburt DA, Butler JC, Rudolph K, Parkinson A (2007) Invasive pneumococcal disease caused by nonvaccine serotypes among alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA 297(16):1784–1792. doi:10.1001/jama.297.16.1784

    PubMed  CAS  Google Scholar 

  13. Hicks LA, Harrison LH, Flannery B, Hadler JL, Schaffner W, Craig AS, Jackson D, Thomas A, Beall B, Lynfield R, Reingold A, Farley MM, Whitney CG (2007) Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004. J Infect Dis 196(9):1346–1354. doi:10.1086/521626

    PubMed  Google Scholar 

  14. Hsu HE, Shutt KA, Moore MR, Beall BW, Bennett NM, Craig AS, Farley MM, Jorgensen JH, Lexau CA, Petit S, Reingold A, Schaffner W, Thomas A, Whitney CG, Harrison LH (2009) Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N Engl J Med 360(3):244–256. doi:10.1056/NEJMoa0800836

    PubMed  CAS  Google Scholar 

  15. Kaplan SL, Mason EO Jr, Wald ER, Schutze GE, Bradley JS, Tan TQ, Hoffman JA, Givner LB, Yogev R, Barson WJ (2004) Decrease of invasive pneumococcal infections in children among 8 children’s hospitals in the United States after the introduction of the 7-valent pneumococcal conjugate vaccine. Pediatrics 113(3 Pt 1):443–449

    PubMed  Google Scholar 

  16. Frazao N, Brito-Avo A, Simas C, Saldanha J, Mato R, Nunes S, Sousa NG, Carrico JA, Almeida JS, Santos-Sanches I, de Lencastre H (2005) Effect of the seven-valent conjugate pneumococcal vaccine on carriage and drug resistance of Streptococcus pneumoniae in healthy children attending day-care centers in Lisbon. Pediatr Infect Dis J 24(3):243–252 (pii: 00006454-200503000-00010)

    PubMed  Google Scholar 

  17. Huang SS, Platt R, Rifas-Shiman SL, Pelton SI, Goldmann D, Finkelstein JA (2005) Post-PCV7 changes in colonizing pneumococcal serotypes in 16 Massachusetts communities, 2001 and 2004. Pediatrics 116(3):e408–e413. doi:10.1542/peds.2004-2338

    PubMed  Google Scholar 

  18. CDC (Centers for Disease Control and Prevention) (2010) Invasive pneumococcal disease in young children before licensure of 13-valent pneumococcal conjugate vaccine, United States, 2007. MMWR morbidity and mortality weekly report, vol 59, Atlanta, GA

  19. Pilishvili T, Lexau C, Farley MM, Hadler J, Harrison LH, Bennett NM, Reingold A, Thomas A, Schaffner W, Craig AS, Smith PJ, Beall BW, Whitney CG, Moore MR (2010) Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis 201(1):32–41. doi:10.1086/648593

    PubMed  Google Scholar 

  20. Weinberger DM, Malley R, Lipsitch M (2011) Serotype replacement in disease after pneumococcal vaccination. Lancet 378(9807):1962–1973. doi:10.1016/S0140-6736(10)62225-8

    PubMed  Google Scholar 

  21. Gladstone RA, Jefferies JM, Faust SN, Clarke SC (2011) Continued control of pneumococcal disease in the UK: the impact of vaccination. J Med Microbiol 60(Pt 1):1–8. doi:10.1099/jmm.0.020016-0

    PubMed  CAS  Google Scholar 

  22. Levy C, Varon E, Bingen E, Lecuyer A, Boucherat M, Cohen R (2011) PneumococcaL meningitis in french children before and after the introduction of pneumococcal conjugate vaccine. Pediatr Infect Dis J 30(2):168–170

    PubMed  Google Scholar 

  23. Bogaert D, De Groot R, Hermans PW (2004) Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4(3):144–154

    PubMed  CAS  Google Scholar 

  24. Hill PC, Cheung YB, Akisanya A, Sankareh K, Lahai G, Greenwood BM, Adegbola RA (2008) Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian infants: a longitudinal study. Clin Infect Dis 46(6):807–814. doi:10.1086/528688

    PubMed  Google Scholar 

  25. Ghaffar F, Friedland IR, McCracken GH Jr (1999) Dynamics of nasopharyngeal colonization by Streptococcus pneumoniae. Pediatr Infect Dis J 18(7):638–646

    PubMed  CAS  Google Scholar 

  26. Musher DM, Alexandraki I, Graviss EA, Yanbeiy N, Eid A, Inderias LA, Phan HM, Solomon E (2000) Bacteremic and nonbacteremic pneumococcal pneumonia: aA prospective study. Medicine 79(4):210–221

    PubMed  CAS  Google Scholar 

  27. Brandenburg JA, Marrie TJ, Coley CM, Singer DE, Obrosky DS, Kapoor WN, Fine MJ (2000) Clinical presentation, processes and outcomes of care for patients with pneumococcal pneumonia. J Gen Intern Med 15(9):638–646

    PubMed  CAS  Google Scholar 

  28. Weiser JN, Austrian R, Sreenivasan PK, Masure HR (1994) Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect Immun 62(6):2582–2589

    PubMed  CAS  Google Scholar 

  29. Kim JO, Weiser JN (1998) Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J Infect Dis 177(2):368–377

    PubMed  CAS  Google Scholar 

  30. Dalia AB, Weiser JN (2011) Minimization of bacterial size allows for complement evasion and is overcome by the agglutinating effect of antibody. Cell Host Microbe 10(5):486–496. doi:10.1016/j.chom.2011.09.009

    PubMed  CAS  Google Scholar 

  31. Rodriguez JL, Dalia AB, Weiser JN (2012) Increased chain length promotes pneumococcal adherence and colonization. Infect Immun 80(10):3454–3459. doi:10.1128/IAI.00587-12

    PubMed  CAS  Google Scholar 

  32. Black S, Shinefield H, Fireman B, Lewis E, Ray P, Hansen JR, Elvin L, Ensor KM, Hackell J, Siber G, Malinoski F, Madore D, Chang I, Kohberger R, Watson W, Austrian R, Edwards K (2000) Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect Dis J 19(3):187–195

    PubMed  CAS  Google Scholar 

  33. Eskola J, Kilpi T, Palmu A, Jokinen J, Haapakoski J, Herva E, Takala A, Kayhty H, Karma P, Kohberger R, Siber G, Makela PH (2001) Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N Engl J Med 344(6):403–409. doi:10.1056/NEJM200102083440602

    PubMed  CAS  Google Scholar 

  34. Madhi SA, Whitney CG, Nohynek H (2008) Lessons learned from clinical trials evaluating pneumococcal conjugate vaccine efficacy against pneumonia and invasive disease. Vaccine 26(Suppl 2):B9–B15. doi:10.1016/j.vaccine.2008.06.001

    PubMed  CAS  Google Scholar 

  35. Rose CE, Romero-Steiner S, Burton RL, Carlone GM, Goldblatt D, Nahm MH, Ashton L, Haston M, Ekstrom N, Haikala R, Kayhty H, Henckaerts I, Durant N, Poolman JT, Fernsten P, Yu X, Hu BT, Jansen KU, Blake M, Simonetti ER, Hermans PW, Plikaytis BD (2011) Multilaboratory comparison of Streptococcus pneumoniae opsonophagocytic killing assays and their level of agreement for the determination of functional antibody activity in human reference sera. Clin Vaccine Immunol 18(1):135–142. doi:10.1128/CVI.00370-10

    PubMed  CAS  Google Scholar 

  36. Lipsitch M, Whitney CG, Zell E, Kaijalainen T, Dagan R, Malley R (2005) Are anticapsular antibodies the primary mechanism of protection against invasive pneumococcal disease? PLoS Med 2(1):e15. doi:10.1371/journal.pmed.0020015

    PubMed  Google Scholar 

  37. Rapola S, Jantti V, Haikala R, Syrjanen R, Carlone GM, Sampson JS, Briles DE, Paton JC, Takala AK, Kilpi TM, Kayhty H (2000) Natural development of antibodies to pneumococcal surface protein A, pneumococcal surface adhesin A, and pneumolysin in relation to pneumococcal carriage and acute otitis media. J Infect Dis 182(4):1146–1152

    PubMed  CAS  Google Scholar 

  38. Laine C, Mwangi T, Thompson CM, Obiero J, Lipsitch M, Scott JA (2004) Age-specific immunoglobulin g (IgG) and IgA to pneumococcal protein antigens in a population in coastal kenya. Infect Immun 72(6):3331–3335

    PubMed  CAS  Google Scholar 

  39. McCool TL, Cate TR, Moy G, Weiser JN (2002) The immune response to pneumococcal proteins during experimental human carriage. J Exp Med 195(3):359–365

    PubMed  CAS  Google Scholar 

  40. Briles DE, Forman C, Crain M (1992) Mouse antibody to phosphocholine can protect mice from infection with mouse-virulent human isolates of Streptococcus pneumoniae. Infect Immun 60(5):1957–1962

    PubMed  CAS  Google Scholar 

  41. Goldenberg HB, McCool TL, Weiser JN (2004) Cross-reactivity of human immunoglobulin G2 recognizing phosphorylcholine and evidence for protection against major bacterial pathogens of the human respiratory tract. J Infect Dis 190(7):1254–1263. doi:10.1086/424517

    PubMed  CAS  Google Scholar 

  42. Simell B, Korkeila M, Pursiainen H, Kilpi TM, Kayhty H (2001) Pneumococcal carriage and otitis media induce salivary antibodies to pneumococcal surface adhesin a, pneumolysin, and pneumococcal surface protein a in children. J Infect Dis 183(6):887–896

    PubMed  CAS  Google Scholar 

  43. Simell B, Kilpi TM, Kayhty H (2002) Pneumococcal carriage and otitis media induce salivary antibodies to pneumococcal capsular polysaccharides in children. J Infect Dis 186(8):1106–1114. doi:10.1086/344235

    PubMed  CAS  Google Scholar 

  44. Fukuyama Y, King JD, Kataoka K, Kobayashi R, Gilbert RS, Oishi K, Hollingshead SK, Briles DE, Fujihashi K (2010) Secretory-IgA antibodies play an important role in the immunity to Streptococcus pneumoniae. J Immunol 185(3):1755–1762. doi:10.4049/jimmunol.1000831

    PubMed  CAS  Google Scholar 

  45. Briles DE, Miyaji E, Fukuyama Y, Ferreira DM, Fujihashi K (2011) Elicitation of mucosal immunity by proteins of Streptococcus pneumoniae. Adv Otorhinolaryngol 72:25–27. doi:10.1159/000324589

    PubMed  Google Scholar 

  46. Ferreira DM, Oliveira ML, Moreno AT, Ho PL, Briles DE, Miyaji EN (2010) Protection against nasal colonization with Streptococcus pneumoniae by parenteral immunization with a DNA vaccine encoding PspA (Pneumococcal surface protein A). Microb Pathog 48(6):205–213. doi:10.1016/j.micpath.2010.02.009

    PubMed  CAS  Google Scholar 

  47. McCool TL, Weiser JN (2004) Limited role of antibody in clearance of Streptococcus pneumoniae in a murine model of colonization. Infect Immun 72(10):5807–5813

    PubMed  CAS  Google Scholar 

  48. Trzcinski K, Thompson C, Malley R, Lipsitch M (2005) Antibodies to conserved pneumococcal antigens correlate with, but are not required for, protection against pneumococcal colonization induced by prior exposure in a mouse model. Infect Immun 73(10):7043–7046

    PubMed  CAS  Google Scholar 

  49. Malley R, Trzcinski K, Srivastava A, Thompson CM, Anderson PW, Lipsitch M (2005) CD4 + T cells mediate antibody-independent acquired immunity to pneumococcal colonization. Proc Natl Acad Sci USA 102(13):4848–4853

    PubMed  CAS  Google Scholar 

  50. Lu YJ, Gross J, Bogaert D, Finn A, Bagrade L, Zhang Q, Kolls JK, Srivastava A, Lundgren A, Forte S, Thompson CM, Harney KF, Anderson PW, Lipsitch M, Malley R (2008) Interleukin-17A mediates acquired immunity to pneumococcal colonization. PLoS Pathog 4(9):e1000159. doi:10.1371/journal.ppat.1000159

    PubMed  Google Scholar 

  51. Zhang Z, Clarke TB, Weiser JN (2009) Cellular effectors mediating Th17-dependent clearance of pneumococcal colonization in mice. J Clin Invest 119(7):1899–1909. doi:10.1172/JCI36731

    PubMed  CAS  Google Scholar 

  52. Jambo KC, Sepako E, Heyderman RS, Gordon SB (2010) Potential role for mucosally active vaccines against pneumococcal pneumonia. Trends Microbiol 18(2):81–89. doi:10.1016/j.tim.2009.12.001

    PubMed  CAS  Google Scholar 

  53. Veenhoven R, Bogaert D, Uiterwaal C, Brouwer C, Kiezebrink H, Bruin J, E IJ, Hermans P, de Groot R, Zegers B, Kuis W, Rijkers G, Schilder A, Sanders E (2003) Effect of conjugate pneumococcal vaccine followed by polysaccharide pneumococcal vaccine on recurrent acute otitis media: a randomised study. Lancet 361(9376):2189–2195

    PubMed  CAS  Google Scholar 

  54. Spijkerman J, Prevaes SM, van Gils EJ, Veenhoven RH, Bruin JP, Bogaert D, Wijmenga-Monsuur AJ, van den Dobbelsteen GP, Sanders EA (2012) Long-term effects of pneumococcal conjugate vaccine on nasopharyngeal carriage of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis. PLoS ONE 7(6):e39730. doi:10.1371/journal.pone.0039730

    PubMed  CAS  Google Scholar 

  55. Kilian M, Mestecky J, Kulhavy R, Tomana M, Butler WT (1980) IgA1 proteases from Haemophilus influenzae, Streptococcus pneumoniae, Neisseria meningitidis, and Streptococcus sanguis: comparative immunochemical studies. J Immunol 124(6):2596–2600

    PubMed  CAS  Google Scholar 

  56. Chiavolini D, Pozzi G, Ricci S (2008) Animal models of Streptococcus pneumoniae disease. Clin Microbiol Rev 21(4):666–685. doi:10.1128/CMR.00012-08

    PubMed  Google Scholar 

  57. Briles DE, Hollingshead SK, Jondottir I (2008) Animal models of invasive pneumococcal disease. In: Siber GR, Klugman KP, Makela PH (eds) Pneumococcal vaccines: the impact of conjugate vaccine. ASM Press, Washington, pp 47–58

    Google Scholar 

  58. Malley R, Weiser JN (2008) Animal models of pneumococcal colonization. In: Siber GR, Klugman KP, Makela PH (eds) Pneumococcal vaccines: the impact of conjugate vaccine. ASM Press, Washington, pp 59–66

    Google Scholar 

  59. Kerner JD, Appleby MW, Mohr RN, Chien S, Rawlings DJ, Maliszewski CR, Witte ON, Perlmutter RM (1995) Impaired expansion of mouse B cell progenitors lacking Btk. Immunity 3(3):301–312

    PubMed  CAS  Google Scholar 

  60. Briles DE, Nahm M, Schroer K, Davie J, Baker P, Kearney J, Barletta R (1981) Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 streptococcus pneumoniae. J Exp Med 153(3):694–705

    PubMed  CAS  Google Scholar 

  61. Jakobsen H, Bjarnarson S, Del Giudice G, Moreau M, Siegrist CA, Jonsdottir I (2002) Intranasal immunization with pneumococcal conjugate vaccines with LT-K63, a nontoxic mutant of heat-Labile enterotoxin, as adjuvant rapidly induces protective immunity against lethal pneumococcal infections in neonatal mice. Infect Immun 70(3):1443–1452

    PubMed  CAS  Google Scholar 

  62. Jakobsen H, Hannesdottir S, Bjarnarson SP, Schulz D, Trannoy E, Siegrist CA, Jonsdottir I (2006) Early life T cell responses to pneumococcal conjugates increase with age and determine the polysaccharide-specific antibody response and protective efficacy. Eur J Immunol 36(2):287–295. doi:10.1002/eji.200535102

    PubMed  CAS  Google Scholar 

  63. Briles DE, Crain MJ, Gray BM, Forman C, Yother J (1992) Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae. Infect Immun 60(1):111–116

    PubMed  CAS  Google Scholar 

  64. Briles DE, Novak L, Hotomi M, van Ginkel FW, King J (2005) Nasal colonization with Streptococcus pneumoniae includes subpopulations of surface and invasive pneumococci. Infect Immun 73(10):6945–6951

    PubMed  CAS  Google Scholar 

  65. Briles DE, Hollingshead SK, Paton JC, Ades EW, Novak L, van Ginkel FW, Benjamin WH Jr (2003) Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae. J Infect Dis 188(3):339–348

    PubMed  CAS  Google Scholar 

  66. Takashima K, Tateda K, Matsumoto T, Ito T, Iizawa Y, Nakao M, Yamaguchi K (1996) Establishment of a model of penicillin-resistant Streptococcus pneumoniae pneumonia in healthy CBA/J mice. J Med Microbiol 45(5):319–322

    PubMed  CAS  Google Scholar 

  67. Philipp MT, Purcell JE, Martin DS, Buck WR, Plauche GB, Ribka EP, DeNoel P, Hermand P, Leiva LE, Bagby GJ, Nelson S (2006) Experimental infection of rhesus macaques with Streptococcus pneumoniae: a possible model for vaccine assessment. J Med Primatol 35(3):113–122. doi:10.1111/j.1600-0684.2006.00164.x

    PubMed  CAS  Google Scholar 

  68. Giebink GS (1999) Otitis media: the chinchilla model. Microb Drug Resist 5(1):57–72

    PubMed  CAS  Google Scholar 

  69. Sabirov A, Metzger DW (2008) Mouse models for the study of mucosal vaccination against otitis media. Vaccine 26(12):1501–1524. doi:10.1016/j.vaccine.2008.01.029

    PubMed  CAS  Google Scholar 

  70. Zhang Q, Choo S, Finn A (2002) Immune responses to novel pneumococcal proteins pneumolysin, PspA, PsaA, and CbpA in adenoidal B cells from children. Infect Immun 70(10):5363–5369

    PubMed  CAS  Google Scholar 

  71. Perez-Dorado I, Galan-Bartual S, Hermoso JA (2012) Pneumococcal surface proteins: when the whole is greater than the sum of its parts. Molecular Oral Microbiol 27(4):221–245. doi:10.1111/j.2041-1014.2012.00655.x

    CAS  Google Scholar 

  72. Gamez G, Hammerschmidt S (2012) Combat pneumococcal infections: adhesins as candidates for protein-based vaccine development. Curr Drug Targets 13(3):323–337

    PubMed  CAS  Google Scholar 

  73. Sham LT, Barendt SM, Kopecky KE, Winkler ME (2011) Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. Proc Natl Acad Sci USA 108(45):E1061–E1069. doi:10.1073/pnas.1108323108

    PubMed  Google Scholar 

  74. Rossjohn J, Gilbert RJ, Crane D, Morgan PJ, Mitchell TJ, Rowe AJ, Andrew PW, Paton JC, Tweten RK, Parker MW (1998) The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae. J Mol Biol 284(2):449–461. doi:10.1006/jmbi.1998.2167

    PubMed  CAS  Google Scholar 

  75. Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, Kurt-Jones E, Paton JC, Wessels MR, Golenbock DT (2003) Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci USA 100(4):1966–1971. doi:10.1073/pnas.0435928100

    PubMed  CAS  Google Scholar 

  76. McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, Ferreira D, Smeaton S, El-Rachkidy R, McLoughlin RM, Mori A, Moran B, Fitzgerald KA, Tschopp J, Petrilli V, Andrew PW, Kadioglu A, Lavelle EC (2010) Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog 6(11):e1001191. doi:10.1371/journal.ppat.1001191

    PubMed  Google Scholar 

  77. Witzenrath M, Pache F, Lorenz D, Koppe U, Gutbier B, Tabeling C, Reppe K, Meixenberger K, Dorhoi A, Ma J, Holmes A, Trendelenburg G, Heimesaat MM, Bereswill S, van der Linden M, Tschopp J, Mitchell TJ, Suttorp N, Opitz B (2011) The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J Immunol 187(1):434–440. doi:10.4049/jimmunol.1003143

    PubMed  CAS  Google Scholar 

  78. Paton JC, Lock RA, Hansman DJ (1983) Effect of immunization with pneumolysin on survival time of mice challenged with Streptococcus pneumoniae. Infect Immun 40(2):548–552

    PubMed  CAS  Google Scholar 

  79. Lock RA, Hansman D, Paton JC (1992) Comparative efficacy of autolysin and pneumolysin as immunogens protecting mice against infection by Streptococcus pneumoniae. Microb Pathog 12(2):137–143

    PubMed  CAS  Google Scholar 

  80. Alexander JE, Lock RA, Peeters CC, Poolman JT, Andrew PW, Mitchell TJ, Hansman D, Paton JC (1994) Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect Immun 62(12):5683–5688

    PubMed  CAS  Google Scholar 

  81. McDaniel LS, Scott G, Kearney JF, Briles DE (1984) Monoclonal antibodies against protease-sensitive pneumococcal antigens can protect mice from fatal infection with Streptococcus pneumoniae. J Exp Med 160(2):386–397

    PubMed  CAS  Google Scholar 

  82. McDaniel LS, Scott G, Widenhofer K, Carroll JM, Briles DE (1986) Analysis of a surface protein of Streptococcus pneumoniae recognised by protective monoclonal antibodies. Microb Pathog 1(6):519–531

    PubMed  CAS  Google Scholar 

  83. Yother J, Briles DE (1992) Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J Bacteriol 174(2):601–609

    PubMed  CAS  Google Scholar 

  84. Ren B, McCrory MA, Pass C, Bullard DC, Ballantyne CM, Xu Y, Briles DE, Szalai AJ (2004) The virulence function of Streptococcus pneumoniae surface protein A involves inhibition of complement activation and impairment of complement receptor-mediated protection. J Immunol 173(12):7506–7512 (pii: 173/12/7506)

    PubMed  CAS  Google Scholar 

  85. Tu AH, Fulgham RL, McCrory MA, Briles DE, Szalai AJ (1999) Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect Immun 67(9):4720–4724

    PubMed  CAS  Google Scholar 

  86. Shaper M, Hollingshead SK, Benjamin WH Jr, Briles DE (2004) PspA protects Streptococcus pneumoniae from killing by apolactoferrin, and antibody to PspA enhances killing of pneumococci by apolactoferrin [corrected]. Infect Immun 72(9):5031–5040

    PubMed  CAS  Google Scholar 

  87. Hollingshead SK, Becker R, Briles DE (2000) Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect Immun 68(10):5889–5900

    PubMed  CAS  Google Scholar 

  88. Vela Coral MC, Fonseca N, Castaneda E, Di Fabio JL, Hollingshead JK, Briles DE (2001) Pneumococcal surface protein A of invasive Streptococcus pneumoniae isolates from Colombian children. Emerg Infect Dis 7(5):832–836

    PubMed  CAS  Google Scholar 

  89. Brandileone MC, Andrade AL, Teles EM, Zanella RC, Yara TI, Di Fabio JL, Hollingshead SK (2004) Typing of pneumococcal surface protein A (PspA) in Streptococcus pneumoniae isolated during epidemiological surveillance in Brazil: towards novel pneumococcal protein vaccines. Vaccine 22(29–30):3890–3896

    PubMed  CAS  Google Scholar 

  90. Tart RC, McDaniel LS, Ralph BA, Briles DE (1996) Truncated Streptococcus pneumoniae PspA molecules elicit cross-protective immunity against pneumococcal challenge in mice. J Infect Dis 173(2):380–386

    PubMed  CAS  Google Scholar 

  91. Moreno AT, Oliveira ML, Ferreira DM, Ho PL, Darrieux M, Leite LC, Ferreira JM Jr, Pimenta FC, Andrade AL, Miyaji EN (2010) Immunization of mice with single PspA fragments induces antibodies capable of mediating complement deposition on different pneumococcal strains and cross-protection. Clin Vaccine Immunol 17(3):439–446. doi:10.1128/CVI.00430-09

    PubMed  CAS  Google Scholar 

  92. McDaniel LS, Sheffield JS, Delucchi P, Briles DE (1991) PspA, a surface protein of Streptococcus pneumoniae, is capable of eliciting protection against pneumococci of more than one capsular type. Infect Immun 59(1):222–228

    PubMed  CAS  Google Scholar 

  93. McDaniel LS, Ralph BA, McDaniel DO, Briles DE (1994) Localization of protection-eliciting epitopes on PspA of Streptococcus pneumoniae between amino acid residues 192 and 260. Microb Pathog 17(5):323–337

    PubMed  CAS  Google Scholar 

  94. Briles DE, King JD, Gray MA, McDaniel LS, Swiatlo E, Benton KA (1996) PspA, a protection-eliciting pneumococcal protein: immunogenicity of isolated native PspA in mice. Vaccine 14(9):858–867 (pii: 0264410X96829483)

    PubMed  CAS  Google Scholar 

  95. Wu HY, Nahm MH, Guo Y, Russell MW, Briles DE (1997) Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumoniae. J Infect Dis 175(4):839–846

    PubMed  CAS  Google Scholar 

  96. Melin M, Coan P, Hollingshead S (2012) Development of cross-reactive antibodies to the proline-rich region of pneumococcal surface protein A in children. Vaccine. doi:10.1016/j.vaccine.2012.10.004

    PubMed  Google Scholar 

  97. Daniels CC, Coan P, King J, Hale J, Benton KA, Briles DE, Hollingshead SK (2010) The proline-rich region of pneumococcal surface proteins A and C contains surface-accessible epitopes common to all pneumococci and elicits antibody-mediated protection against sepsis. Infect Immun 78(5):2163–2172. doi:10.1128/IAI.01199-09

    PubMed  CAS  Google Scholar 

  98. Russell H, Tharpe JA, Wells DE, White EH, Johnson JE (1990) Monoclonal antibody recognizing a species-specific protein from Streptococcus pneumoniae. J Clin Microbiol 28(10):2191–2195

    PubMed  CAS  Google Scholar 

  99. Rajam G, Anderton JM, Carlone GM, Sampson JS, Ades EW (2008) Pneumococcal surface adhesin A (PsaA): a review. Crit Rev Microbiol 34(3–4):131–142. doi:10.1080/10408410802275352

    PubMed  CAS  Google Scholar 

  100. Briles DE, Ades E, Paton JC, Sampson JS, Carlone GM, Huebner RC, Virolainen A, Swiatlo E, Hollingshead SK (2000) Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect Immun 68(2):796–800

    PubMed  CAS  Google Scholar 

  101. Brooks-Walter A, Briles DE, Hollingshead SK (1999) The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect Immun 67(12):6533–6542

    PubMed  CAS  Google Scholar 

  102. Rosenow C, Ryan P, Weiser JN, Johnson S, Fontan P, Ortqvist A, Masure HR (1997) Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol 25(5):819–829

    PubMed  CAS  Google Scholar 

  103. Hammerschmidt S, Talay SR, Brandtzaeg P, Chhatwal GS (1997) SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol Microbiol 25(6):1113–1124

    PubMed  CAS  Google Scholar 

  104. Janulczyk R, Iannelli F, Sjoholm AG, Pozzi G, Bjorck L (2000) Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J Biol Chem 275(47):37257–37263

    PubMed  CAS  Google Scholar 

  105. Cheng Q, Finkel D, Hostetter MK (2000) Novel purification scheme and functions for a C3-binding protein from Streptococcus pneumoniae. Biochemistry 39(18):5450–5457

    PubMed  CAS  Google Scholar 

  106. Dave S, Brooks-Walter A, Pangburn MK, McDaniel LS (2001) PspC, a pneumococcal surface protein, binds human factor H. Infect Immun 69(5):3435–3437

    PubMed  CAS  Google Scholar 

  107. Jarva H, Janulczyk R, Hellwage J, Zipfel PF, Bjorck L, Meri S (2002) Streptococcus pneumoniae evades complement attack and opsonophagocytosis by expressing the pspC locus-encoded Hic protein that binds to short consensus repeats 8–11 of factor H. J Immunol 168(4):1886–1894

    PubMed  CAS  Google Scholar 

  108. Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, Oldfield NJ, Self T, Ala’Aldeen DA, Tuomanen EI (2009) Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 119(6):1638–1646. doi:10.1172/JCI36759

    PubMed  CAS  Google Scholar 

  109. Balachandran P, Brooks-Walter A, Virolainen-Julkunen A, Hollingshead SK, Briles DE (2002) Role of pneumococcal surface protein C in nasopharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect Immun 70(5):2526–2534

    PubMed  CAS  Google Scholar 

  110. Ogunniyi AD, Woodrow MC, Poolman JT, Paton JC (2001) Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA. Infect Immun 69(10):5997–6003

    PubMed  CAS  Google Scholar 

  111. Iannelli F, Oggioni MR, Pozzi G (2002) Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene 284(1–2):63–71 (pii: S0378111901008964)

    PubMed  CAS  Google Scholar 

  112. Moreno AT, Oliveira ML, Ho PL, Vadesilho CF, Palma GM, Ferreira JM Jr, Ferreira DM, Santos SR, Martinez MB, Miyaji EN (2012) Cross-reactivity of antipneumococcal surface protein C (PspC) antibodies with different strains and evaluation of inhibition of human complement factor H and secretory IgA binding via PspC. Clin Vaccine Immunol 19(4):499–507. doi:10.1128/CVI.05706-11

    PubMed  CAS  Google Scholar 

  113. Adamou JE, Heinrichs JH, Erwin AL, Walsh W, Gayle T, Dormitzer M, Dagan R, Brewah YA, Barren P, Lathigra R, Langermann S, Koenig S, Johnson S (2001) Identification and characterization of a novel family of pneumococcal proteins that are protective against sepsis. Infect Immun 69(2):949–958. doi:10.1128/IAI.69.2.949-958.2001

    PubMed  CAS  Google Scholar 

  114. Zhang Y, Masi AW, Barniak V, Mountzouros K, Hostetter MK, Green BA (2001) Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae, protects mice against intranasal pneumococcal challenge. Infect Immun 69(6):3827–3836. doi:10.1128/IAI.69.6.3827-3836.2001

    PubMed  CAS  Google Scholar 

  115. Hamel J, Charland N, Pineau I, Ouellet C, Rioux S, Martin D, Brodeur BR (2004) Prevention of pneumococcal disease in mice immunized with conserved surface-accessible proteins. Infect Immun 72(5):2659–2670

    PubMed  CAS  Google Scholar 

  116. Godfroid F, Hermand P, Verlant V, Denoel P, Poolman JT (2011) Preclinical evaluation of the Pht proteins as potential cross-protective pneumococcal vaccine antigens. Infect Immun 79(1):238–245. doi:10.1128/IAI.00378-10

    PubMed  CAS  Google Scholar 

  117. Denoel P, Philipp MT, Doyle L, Martin D, Carletti G, Poolman JT (2011) A protein-based pneumococcal vaccine protects rhesus macaques from pneumonia after experimental infection with Streptococcus pneumoniae. Vaccine 29(33):5495–5501. doi:10.1016/j.vaccine.2011.05.051

    PubMed  CAS  Google Scholar 

  118. Jomaa M, Terry S, Hale C, Jones C, Dougan G, Brown J (2006) Immunization with the iron uptake ABC transporter proteins PiaA and PiuA prevents respiratory infection with Streptococcus pneumoniae. Vaccine 24(24):5133–5139. doi:10.1016/j.vaccine.2006.04.012

    PubMed  CAS  Google Scholar 

  119. Brown JS, Ogunniyi AD, Woodrow MC, Holden DW, Paton JC (2001) Immunization with components of two iron uptake ABC transporters protects mice against systemic Streptococcus pneumoniae infection. Infect Immun 69(11):6702–6706. doi:10.1128/IAI.69.11.6702-6706.2001

    PubMed  CAS  Google Scholar 

  120. Jomaa M, Yuste J, Paton JC, Jones C, Dougan G, Brown JS (2005) Antibodies to the iron uptake ABC transporter lipoproteins PiaA and PiuA promote opsonophagocytosis of Streptococcus pneumoniae. Infect Immun 73(10):6852–6859. doi:10.1128/IAI.73.10.6852-6859.2005

    PubMed  CAS  Google Scholar 

  121. Harfouche C, Filippini S, Gianfaldoni C, Ruggiero P, Moschioni M, Maccari S, Pancotto L, Arcidiacono L, Galletti B, Censini S, Mori E, Giuliani M, Facciotti C, Cartocci E, Savino S, Doro F, Pallaoro M, Nocadello S, Mancuso G, Haston M, Goldblatt D, Barocchi MA, Pizza M, Rappuoli R, Masignani V (2012) RrgB321, a fusion protein of the three variants of the pneumococcal pilus backbone RrgB, is protective in vivo and elicits opsonic antibodies. Infect Immun 80(1):451–460. doi:10.1128/IAI.05780-11

    PubMed  CAS  Google Scholar 

  122. Aguiar SI, Serrano I, Pinto FR, Melo-Cristino J, Ramirez M (2008) The presence of the pilus locus is a clonal property among pneumococcal invasive isolates. BMC Microbiol 8:41. doi:10.1186/1471-2180-8-41

    PubMed  Google Scholar 

  123. Moschioni M, Donati C, Muzzi A, Masignani V, Censini S, Hanage WP, Bishop CJ, Reis JN, Normark S, Henriques-Normark B, Covacci A, Rappuoli R, Barocchi MA (2008) Streptococcus pneumoniae contains 3 rlrA pilus variants that are clonally related. J Infect Dis 197(6):888–896. doi:10.1086/528375

    PubMed  CAS  Google Scholar 

  124. Bagnoli F, Moschioni M, Donati C, Dimitrovska V, Ferlenghi I, Facciotti C, Muzzi A, Giusti F, Emolo C, Sinisi A, Hilleringmann M, Pansegrau W, Censini S, Rappuoli R, Covacci A, Masignani V, Barocchi MA (2008) A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol 190(15):5480–5492. doi:10.1128/JB.00384-08

    PubMed  CAS  Google Scholar 

  125. Basset A, Turner KH, Boush E, Sayeed S, Dove SL, Malley R (2011) Expression of the type 1 pneumococcal pilus is bistable and negatively regulated by the structural component RrgA. Infect Immun 79(8):2974–2983. doi:10.1128/IAI.05117-11

    PubMed  CAS  Google Scholar 

  126. De Angelis G, Moschioni M, Muzzi A, Pezzicoli A, Censini S, Delany I, Lo Sapio M, Sinisi A, Donati C, Masignani V, Barocchi MA (2011) The Streptococcus pneumoniae pilus-1 displays a biphasic expression pattern. PLoS ONE 6(6):e21269. doi:10.1371/journal.pone.0021269

    PubMed  Google Scholar 

  127. Glover DT, Hollingshead SK, Briles DE (2008) Streptococcus pneumoniae surface protein PcpA elicits protection against lung infection and fatal sepsis. Infect Immun 76(6):2767–2776. doi:10.1128/IAI.01126-07

    PubMed  CAS  Google Scholar 

  128. Ogunniyi AD, Folland RL, Briles DE, Hollingshead SK, Paton JC (2000) Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect Immun 68(5):3028–3033

    PubMed  CAS  Google Scholar 

  129. Ogunniyi AD, Grabowicz M, Briles DE, Cook J, Paton JC (2007) Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae. Infect Immun 75(1):350–357. doi:10.1128/IAI.01103-06

    PubMed  CAS  Google Scholar 

  130. Hakenbeck R, Madhour A, Denapaite D, Bruckner R (2009) Versatility of choline metabolism and choline-binding proteins in Streptococcus pneumoniae and commensal streptococci. FEMS Microbiol Rev 33(3):572–586

    PubMed  CAS  Google Scholar 

  131. Yother J, White JM (1994) Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA. J Bacteriol 176(10):2976–2985

    PubMed  CAS  Google Scholar 

  132. Ramos-Sevillano E, Moscoso M, Garcia P, Garcia E, Yuste J (2011) Nasopharyngeal colonization and Invasive disease are enhanced by the cell wall hydrolases LytB and LytC of Streptococcus pneumoniae. PLoS ONE 6(8):e23626. doi:10.1371/journal.pone.0023626 (pii: PONE-D-11-09880)

    PubMed  CAS  Google Scholar 

  133. Wizemann TM, Heinrichs JH, Adamou JE, Erwin AL, Kunsch C, Choi GH, Barash SC, Rosen CA, Masure HR, Tuomanen E, Gayle A, Brewah YA, Walsh W, Barren P, Lathigra R, Hanson M, Langermann S, Johnson S, Koenig S (2001) Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect Immun 69(3):1593–1598. doi:10.1128/IAI.69.3.1593-1598.2001

    PubMed  CAS  Google Scholar 

  134. Giefing C, Meinke AL, Hanner M, Henics T, Bui MD, Gelbmann D, Lundberg U, Senn BM, Schunn M, Habel A, Henriques-Normark B, Ortqvist A, Kalin M, von Gabain A, Nagy E (2008) Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J Exp Med 205(1):117–131

    PubMed  CAS  Google Scholar 

  135. Sham LT, Tsui HC, Land AD, Barendt SM, Winkler ME (2012) Recent advances in pneumococcal peptidoglycan biosynthesis suggest new vaccine and antimicrobial targets. Curr Opin Microbiol 15(2):194–203. doi:10.1016/j.mib.2011.12.013

    PubMed  CAS  Google Scholar 

  136. Beilharz K, Novakova L, Fadda D, Branny P, Massidda O, Veening JW (2012) Control of cell division in Streptococcus pneumoniae by the conserved Ser/Thr protein kinase StkP. Proc Natl Acad Sci USA 109(15):E905–E913. doi:10.1073/pnas.1119172109

    PubMed  CAS  Google Scholar 

  137. Mahdi LK, Wang H, Van der Hoek MB, Paton JC, Ogunniyi AD (2012) Identification of a novel pneumococcal vaccine antigen preferentially expressed during meningitis in mice. J Clin Invest 122(6):2208–2220. doi:10.1172/JCI45850

    PubMed  CAS  Google Scholar 

  138. Malley R, Lipsitch M, Stack A, Saladino R, Fleisher G, Pelton S, Thompson C, Briles D, Anderson P (2001) Intranasal immunization with killed unencapsulated whole cells prevents colonization and invasive disease by capsulated pneumococci. Infect Immun 69(8):4870–4873. doi:10.1128/IAI.69.8.4870-4873.2001

    PubMed  CAS  Google Scholar 

  139. Malley R, Morse SC, Leite LC, Areas AP, Ho PL, Kubrusly FS, Almeida IC, Anderson P (2004) Multiserotype protection of mice against pneumococcal colonization of the nasopharynx and middle ear by killed nonencapsulated cells given intranasally with a nontoxic adjuvant. Infect Immun 72(7):4290–4292

    PubMed  CAS  Google Scholar 

  140. Malley R, Srivastava A, Lipsitch M, Thompson CM, Watkins C, Tzianabos A, Anderson PW (2006) Antibody-independent, interleukin-17A-mediated, cross-serotype immunity to pneumococci in mice immunized intranasally with the cell wall polysaccharide. Infect Immun 74(4):2187–2195. doi:10.1128/IAI.74.4.2187-2195.2006

    PubMed  CAS  Google Scholar 

  141. Basset A, Thompson CM, Hollingshead SK, Briles DE, Ades EW, Lipsitch M, Malley R (2007) Antibody-independent, CD4 + T-cell-dependent protection against pneumococcal colonization elicited by intranasal immunization with purified pneumococcal proteins. Infect Immun 75(11):5460–5464. doi:10.1128/IAI.00773-07

    PubMed  CAS  Google Scholar 

  142. Lu YJ, Forte S, Thompson CM, Anderson PW, Malley R (2009) Protection against Pneumococcal colonization and fatal pneumonia by a trivalent conjugate of a fusion protein with the cell wall polysaccharide. Infect Immun 77(5):2076–2083. doi:10.1128/IAI.01554-08

    PubMed  CAS  Google Scholar 

  143. Lu YJ, Yadav P, Clements JD, Forte S, Srivastava A, Thompson CM, Seid R, Look J, Alderson M, Tate A, Maisonneuve JF, Robertson G, Anderson PW, Malley R (2010) Options for inactivation, adjuvant, and route of topical administration of a killed, unencapsulated pneumococcal whole-cell vaccine. Clin Vaccine Immunol 17(6):1005–1012. doi:10.1128/CVI.00036-10

    PubMed  CAS  Google Scholar 

  144. Lu YJ, Leite L, Goncalves VM, Dias Wde O, Liberman C, Fratelli F, Alderson M, Tate A, Maisonneuve JF, Robertson G, Graca R, Sayeed S, Thompson CM, Anderson P, Malley R (2010) GMP-grade pneumococcal whole-cell vaccine injected subcutaneously protects mice from nasopharyngeal colonization and fatal aspiration-sepsis. Vaccine 28(47):7468–7475. doi:10.1016/j.vaccine.2010.09.031

    PubMed  CAS  Google Scholar 

  145. WHO (2008) Target product profile (TPP) for the advance market commitment (AMC) for pneumococcal conjugate vaccines. 2012 (02/10/2012)

  146. Moffitt KL, Yadav P, Weinberger DM, Anderson PW, Malley R (2012) Broad antibody and T cell reactivity induced by a pneumococcal whole-cell vaccine. Vaccine 30(29):4316–4322. doi:10.1016/j.vaccine.2012.01.034

    PubMed  CAS  Google Scholar 

  147. Li Y, Wang S, Scarpellini G, Gunn B, Xin W, Wanda SY, Roland KL, Curtiss R 3rd (2009) Evaluation of new generation Salmonella enterica serovar Typhimurium vaccines with regulated delayed attenuation to induce immune responses against PspA. Proc Natl Acad Sci USA 106(2):593–598. doi:10.1073/pnas.0811697106

    PubMed  CAS  Google Scholar 

  148. Wang S, Li Y, Shi H, Scarpellini G, Torres-Escobar A, Roland KL, Curtiss R 3rd (2010) Immune responses to recombinant pneumococcal PsaA antigen delivered by a live attenuated Salmonella vaccine. Infect Immun 78(7):3258–3271. doi:10.1128/IAI.00176-10

    PubMed  CAS  Google Scholar 

  149. Xin W, Wanda SY, Li Y, Wang S, Mo H, Curtiss R 3rd (2008) Analysis of type II secretion of recombinant pneumococcal PspA and PspC in a Salmonella enterica serovar Typhimurium vaccine with regulated delayed antigen synthesis. Infect Immun 76(7):3241–3254. doi:10.1128/IAI.01623-07

    PubMed  CAS  Google Scholar 

  150. Wang S, Li Y, Scarpellini G, Kong W, Shi H, Baek CH, Gunn B, Wanda SY, Roland KL, Zhang X, Senechal-Willis P, Curtiss R 3rd (2010) Salmonella vaccine vectors displaying delayed antigen synthesis in vivo to enhance immunogenicity. Infect Immun 78(9):3969–3980. doi:10.1128/IAI.00444-10

    PubMed  CAS  Google Scholar 

  151. Xin W, Li Y, Mo H, Roland KL, Curtiss R 3rd (2009) PspA family fusion proteins delivered by attenuated Salmonella enterica serovar Typhimurium extend and enhance protection against Streptococcus pneumoniae. Infect Immun 77(10):4518–4528. doi:10.1128/IAI.00486-09

    PubMed  CAS  Google Scholar 

  152. Xin W, Wanda SY, Zhang X, Santander J, Scarpellini G, Ellis K, Alamuri P, Curtiss R 3rd (2012) The Asd + -DadB + dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated salmonella vaccine. Infect Immun 80(10):3621–3633. doi:10.1128/IAI.00620-12

    PubMed  CAS  Google Scholar 

  153. Shi H, Santander J, Brenneman KE, Wanda SY, Wang S, Senechal P, Sun W, Roland KL, Curtiss R (2010) Live recombinant Salmonella Typhi vaccines constructed to investigate the role of rpoS in eliciting immunity to a heterologous antigen. PLoS ONE 5(6):e11142. doi:10.1371/journal.pone.0011142

    PubMed  Google Scholar 

  154. Oliveira ML, Monedero V, Miyaji EN, Leite LC, Lee Ho P, Perez-Martinez G (2003) Expression of Streptococcus pneumoniae antigens, PsaA (pneumococcal surface antigen A) and PspA (pneumococcal surface protein A) by Lactobacillus casei. FEMS Microbiol Lett 227(1):25–31

    PubMed  CAS  Google Scholar 

  155. Oliveira ML, Areas AP, Campos IB, Monedero V, Perez-Martinez G, Miyaji EN, Leite LC, Aires KA, Lee Ho P (2006) Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A. Microbes Infect Institut Pasteur 8(4):1016–1024. doi:10.1016/j.micinf.2005.10.020

    CAS  Google Scholar 

  156. Hernani Mde L, Ferreira PC, Ferreira DM, Miyaji EN, Ho PL, Oliveira ML (2011) Nasal immunization of mice with Lactobacillus casei expressing the pneumococcal surface protein C primes the immune system and decreases pneumococcal nasopharyngeal colonization in mice. FEMS Immunol Med Microbiol 62(3):263–272. doi:10.1111/j.1574-695X.2011.00809.x

    PubMed  Google Scholar 

  157. Hanniffy SB, Carter AT, Hitchin E, Wells JM (2007) Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection. J Infect Dis 195(2):185–193. doi:10.1086/509807

    PubMed  CAS  Google Scholar 

  158. Campos IB, Darrieux M, Ferreira DM, Miyaji EN, Silva DA, Areas AP, Aires KA, Leite LC, Ho PL, Oliveira ML (2008) Nasal immunization of mice with Lactobacillus casei expressing the Pneumococcal Surface Protein A: induction of antibodies, complement deposition and partial protection against Streptococcus pneumoniae challenge. Microbes Infect/Institut Pasteur 10(5):481–488. doi:10.1016/j.micinf.2008.01.007

    CAS  Google Scholar 

  159. Ferreira DM, Darrieux M, Silva DA, Leite LC, Ferreira JM Jr, Ho PL, Miyaji EN, Oliveira ML (2009) Characterization of protective mucosal and systemic immune responses elicited by pneumococcal surface protein PspA and PspC nasal vaccines against a respiratory pneumococcal challenge in mice. Clin Vaccine Immunol 16(5):636–645. doi:10.1128/CVI.00395-08

    PubMed  CAS  Google Scholar 

  160. Medina M, Villena J, Vintini E, Hebert EM, Raya R, Alvarez S (2008) Nasal immunization with Lactococcus lactis expressing the pneumococcal protective protein A induces protective immunity in mice. Infect Immun 76(6):2696–2705. doi:10.1128/IAI.00119-08

    PubMed  CAS  Google Scholar 

  161. Ferreira DM, Darrieux M, Oliveira ML, Leite LC, Miyaji EN (2008) Optimized immune response elicited by a DNA vaccine expressing pneumococcal surface protein a is characterized by a balanced immunoglobulin G1 (IgG1)/IgG2a ratio and proinflammatory cytokine production. Clin Vaccine Immunol 15(3):499–505

    PubMed  CAS  Google Scholar 

  162. Arulanandam BP, Lynch JM, Briles DE, Hollingshead S, Metzger DW (2001) Intranasal vaccination with pneumococcal surface protein A and interleukin-12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae infection. Infect Immun 69(11):6718–6724. doi:10.1128/IAI.69.11.6718-6724.2001

    PubMed  CAS  Google Scholar 

  163. Oliveira ML, Miyaji EN, Ferreira DM, Moreno AT, Ferreira PC, Lima FA, Santos FL, Sakauchi MA, Takata CS, Higashi HG, Raw I, Kubrusly FS, Ho PL (2010) Combination of pneumococcal surface protein A (PspA) with whole cell pertussis vaccine increases protection against pneumococcal challenge in mice. PLoS ONE 5(5):e10863. doi:10.1371/journal.pone.0010863

    PubMed  Google Scholar 

  164. Lima FA, Ferreira DM, Moreno AT, Ferreira PC, Palma GM, Ferreira JM Jr, Raw I, Miyaji EN, Ho PL, Oliveira ML (2012) Controlled inflammatory responses in the lungs are associated with protection elicited by a pneumococcal surface protein A-based vaccine against a lethal respiratory challenge with streptococcus pneumoniae in mice. Clin Vaccine Immunol 19(9):1382–1392. doi:10.1128/CVI.00171-12

    PubMed  CAS  Google Scholar 

  165. Briles DE, Hollingshead SK, King J, Swift A, Braun PA, Park MK, Ferguson LM, Nahm MH, Nabors GS (2000) Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J Infect Dis 182(6):1694–1701

    PubMed  CAS  Google Scholar 

  166. Nabors GS, Braun PA, Herrmann DJ, Heise ML, Pyle DJ, Gravenstein S, Schilling M, Ferguson LM, Hollingshead SK, Briles DE, Becker RS (2000) Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies to heterologous PspA molecules. Vaccine 18(17):1743–1754

    PubMed  CAS  Google Scholar 

  167. Schmid P, Selak S, Keller M, Luhan B, Magyarics Z, Seidel S, Schlick P, Reinisch C, Lingnau K, Nagy E, Grubeck-Loebenstein B (2011) Th17/Th1 biased immunity to the pneumococcal proteins PcsB, StkP and PsaA in adults of different age. Vaccine 29(23):3982–3989. doi:10.1016/j.vaccine.2011.03.081

    PubMed  CAS  Google Scholar 

  168. Seiberling M, Bologa M, Brookes R, Ochs M, Go K, Neveu D, Kamtchoua T, Lashley P, Yuan T, Gurunathan S (2012) Safety and immunogenicity of a pneumococcal histidine triad protein D vaccine candidate in adults. Vaccine. doi:10.1016/j.vaccine.2012.10.080

    PubMed  Google Scholar 

  169. Kamtchoua T, Bologa M, Hopfer R, Neveu D, Hu B, Sheng X, Corde N, Pouzet C, Zimmerman G, Gurunathan S (2012) Safety and immunogenicity of the pneumococcal pneumolysin derivative PlyD1 in a single-antigen protein vaccine candidate in adults. Vaccine. doi:10.1016/j.vaccine.2012.11.005

    Google Scholar 

  170. Bologa M, Kamtchoua T, Hopfer R, Sheng X, Hicks B, Plevic V, Yuan T, Gurunathan S (2012) Safety and immunogenicity of pneumococcal protein vaccine candidates: monovalent choline-binding protein A (PcpA) vaccine and bivalent PcpA-pneumococcal histidine triad protein D vaccine. Vaccine. doi:10.1016/j.vaccine.2012.10.076

    Google Scholar 

  171. Ferreira DM, Jambo KC, Gordon SB (2011) Experimental human pneumococcal carriage models for vaccine research. Trends Microbiol 19(9):464–470. doi:10.1016/j.tim.2011.06.003

    PubMed  CAS  Google Scholar 

  172. Wright AK, Ferreira DM, Gritzfeld JF, Wright AD, Armitage K, Jambo KC, Bate E, El Batrawy S, Collins A, Gordon SB (2012) Human nasal challenge with Streptococcus pneumoniae is immunising in the absence of carriage. PLoS Pathog 8(4):e1002622. doi:10.1371/journal.ppat.1002622

    PubMed  CAS  Google Scholar 

  173. Gritzfeld JF, Roberts P, Roche L, El Batrawy S, Gordon SB (2011) Comparison between nasopharyngeal swab and nasal wash, using culture and PCR, in the detection of potential respiratory pathogens. BMC Res Notes 4:122. doi:10.1186/1756-0500-4-122

    PubMed  Google Scholar 

  174. Weiser JN (2010) The pneumococcus: why a commensal misbehaves. J Mol Med (Berl) 88(2):97–102. doi:10.1007/s00109-009-0557-x

    Google Scholar 

  175. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS, Pichon B, Baker S, Parry CM, Lambertsen LM, Shahinas D, Pillai DR, Mitchell TJ, Dougan G, Tomasz A, Klugman KP, Parkhill J, Hanage WP, Bentley SD (2011) Rapid pneumococcal evolution in response to clinical interventions. Science 331(6016):430–434. doi:10.1126/science.1198545

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNPq, FAPESP, and Fundação Butantan (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eliane Namie Miyaji or Maria Leonor Sarno Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyaji, E.N., Oliveira, M.L.S., Carvalho, E. et al. Serotype-independent pneumococcal vaccines. Cell. Mol. Life Sci. 70, 3303–3326 (2013). https://doi.org/10.1007/s00018-012-1234-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1234-8

Keywords

Navigation