Skip to main content

Advertisement

Log in

Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Microglia are key sentinels of central nervous system health, and their dysfunction has been widely implicated in the progressive nature of neurodegenerative diseases. While microglia can produce a host of factors that are toxic to neighboring neurons, NOX2 has been implicated as a common and essential mechanism of microglia-mediated neurotoxicity. Accumulating evidence indicates that activation of the NOX2 enzyme complex in microglia is neurotoxic, both through the production of extracellular reactive oxygen species that damage neighboring neurons as well as the initiation of redox signaling in microglia that amplifies the pro-inflammatory response. More specifically, evidence supports that NOX2 redox signaling enhances microglial sensitivity to pro-inflammatory stimuli, and amplifies the production of neurotoxic cytokines, to promote chronic and neurotoxic microglial activation. Here, we describe the evidence denoting the role of NOX2 in microglia-mediated neurotoxicity with an emphasis on Alzheimer’s and Parkinson’s disease, describe available inhibitors that have been tested, and detail evidence of the neuroprotective and therapeutic potential of targeting this enzyme complex to regulate microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Graeber MB (2010) Changing face of microglia. Science 330(6005):783–788

    Article  PubMed  CAS  Google Scholar 

  2. Mittelbronn M et al (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol (Berl) 101(3):249–255

    CAS  Google Scholar 

  3. Tremblay ME, Majewska AK (2011) A role for microglia in synaptic plasticity? Commun Integr Biol 4(2):220–222

    Article  PubMed  Google Scholar 

  4. Rivest S (2011) The promise of anti-inflammatory therapies for CNS injuries and diseases. Expert Rev Neurother 11(6):783–786

    Article  PubMed  Google Scholar 

  5. Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(Pt 2):288–295

    PubMed  CAS  Google Scholar 

  6. Muller FJ, Snyder EY, Loring JF (2006) Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7(1):75–84

    Article  PubMed  CAS  Google Scholar 

  7. Morgan SC, Taylor DL, Pocock JM (2004) Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem 90(1):89–101

    Article  PubMed  CAS  Google Scholar 

  8. Liao H et al (2004) Tenascin-R plays a role in neuroprotection via its distinct domains coordinately modulating the microglia function. J Biol Chem 280:8316–8323

    Article  PubMed  CAS  Google Scholar 

  9. Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7(4):366–377

    Article  PubMed  CAS  Google Scholar 

  10. Streit WJ, Xue QS (2009) Life and death of microglia. J Neuroimmune Pharmacol 4(4):371–379

    Article  PubMed  Google Scholar 

  11. Shechter R et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6(7):e1000113

    Article  PubMed  CAS  Google Scholar 

  12. Chen SK et al (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141(5):775–785

    Article  PubMed  CAS  Google Scholar 

  13. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69

    Article  PubMed  CAS  Google Scholar 

  14. McGeer PL et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291

    Article  PubMed  CAS  Google Scholar 

  15. Gao HM et al (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81(6):1285–1297

    Article  PubMed  CAS  Google Scholar 

  16. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98

    Article  PubMed  CAS  Google Scholar 

  17. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201

    Article  PubMed  Google Scholar 

  18. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  PubMed  CAS  Google Scholar 

  19. Sareila O et al (2011) NOX2 complex-derived ROS as immune regulators. Antioxid Redox Signal 15:2197–2208

    Article  PubMed  CAS  Google Scholar 

  20. Zhen L et al (1993) Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox. Proc Natl Acad Sci USA 90(21):9832–9836

    Article  PubMed  CAS  Google Scholar 

  21. Dinauer MC et al (1987) The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome B complex. Nature 327(6124):717–720

    Article  PubMed  CAS  Google Scholar 

  22. Sankarapandi S et al (1998) Measurement and characterization of superoxide generation in microglial cells: evidence for an NADPH oxidase-dependent pathway. Arch Biochem Biophys 353(2):312–321

    Article  PubMed  CAS  Google Scholar 

  23. Babior BM (1978) Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med 298(12):659–668

    Article  PubMed  CAS  Google Scholar 

  24. Jekabsone A et al (2006) Fibrillar beta-amyloid peptide Abeta1-40 activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase: a cell culture study. J Neuroinflammation 3:24

    Article  PubMed  CAS  Google Scholar 

  25. Mander PK, Jekabsone A, Brown GC (2006) Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. J Immunol 176(2):1046–1052

    PubMed  CAS  Google Scholar 

  26. Qin L et al (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279(2):1415–1421

    Article  PubMed  CAS  Google Scholar 

  27. Pawate S et al (2004) Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 77(4):540–551

    Article  PubMed  CAS  Google Scholar 

  28. Anilkumar N et al (2008) Nox4 and nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation. Arterioscler Thromb Vasc Biol 28(7):1347–1354

    Article  PubMed  CAS  Google Scholar 

  29. Li Q et al (2009) Endosomal Nox2 facilitates redox-dependent induction of NF-kappaB by TNF-alpha. Antioxid Redox Signal 11(6):1249–1263

    Article  PubMed  CAS  Google Scholar 

  30. Bjorgvinsdottir H, Zhen L, Dinauer MC (1996) Cloning of murine gp91phox cDNA and functional expression in a human X-linked chronic granulomatous disease cell line. Blood 87(5):2005–2010

    PubMed  CAS  Google Scholar 

  31. Segal AW et al (1992) Cytochrome b-245 is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes. Biochem J 284(Pt 3):781–788

    PubMed  CAS  Google Scholar 

  32. Henderson LM, Banting G, Chappell JB (1995) The arachidonate-activable, NADPH oxidase-associated H + channel. Evidence that gp91-phox functions as an essential part of the channel. J Biol Chem 270(11):5909–5916

    Article  PubMed  CAS  Google Scholar 

  33. Maly FE et al (1993) Restitution of superoxide generation in autosomal cytochrome-negative chronic granulomatous disease (A22(0) CGD)-derived B lymphocyte cell lines by transfection with p22phax cDNA. J Exp Med 178(6):2047–2053

    Article  PubMed  CAS  Google Scholar 

  34. Nauseef WM et al (1991) Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J Biol Chem 266(9):5911–5917

    PubMed  CAS  Google Scholar 

  35. Jesaitis AJ et al (1990) Ultrastructural localization of cytochrome b in the membranes of resting and phagocytosing human granulocytes. J Clin Invest 85(3):821–835

    Article  PubMed  CAS  Google Scholar 

  36. Chanock SJ et al (1992) O2- production by B lymphocytes lacking the respiratory burst oxidase subunit p47phox after transfection with an expression vector containing a p47phox cDNA. Proc Natl Acad Sci USA 89(21):10174–10177

    Article  PubMed  CAS  Google Scholar 

  37. Huang J, Hitt ND, Kleinberg ME (1995) Stoichiometry of p22-phox and gp91-phox in phagocyte cytochrome b558. Biochemistry 34(51):16753–16757

    Article  PubMed  CAS  Google Scholar 

  38. Parkos CA et al (1989) Absence of both the 91kD and 22kD subunits of human neutrophil cytochrome b in two genetic forms of chronic granulomatous disease. Blood 73(6):1416–1420

    PubMed  CAS  Google Scholar 

  39. DeLeo FR et al (2000) Processing and maturation of flavocytochrome b558 include incorporation of heme as a prerequisite for heterodimer assembly. J Biol Chem 275(18):13986–13993

    Article  PubMed  CAS  Google Scholar 

  40. Clark RA et al (1990) Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest 85(3):714–721

    Article  PubMed  CAS  Google Scholar 

  41. Inanami O et al (1998) Activation of the leukocyte NADPH oxidase by phorbol ester requires the phosphorylation of p47PHOX on serine 303 or 304. J Biol Chem 273(16):9539–9543

    Article  PubMed  CAS  Google Scholar 

  42. Baumer AT et al (2008) Phosphatidylinositol 3-kinase-dependent membrane recruitment of Rac-1 and p47phox is critical for alpha-platelet-derived growth factor receptor-induced production of reactive oxygen species. J Biol Chem 283(12):7864–7876

    Article  PubMed  CAS  Google Scholar 

  43. Zhang D et al (2011) Microglial MAC1 receptor and PI3K are essential in mediating beta-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation 8(1):3

    Article  PubMed  CAS  Google Scholar 

  44. Cheng G, Lambeth JD (2004) NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain. J Biol Chem 279(6):4737–4742

    Article  PubMed  CAS  Google Scholar 

  45. DeLeo FR et al (1999) NADPH oxidase activation and assembly during phagocytosis. J Immunol 163(12):6732–6740

    PubMed  CAS  Google Scholar 

  46. Dusi S, Donini M, Rossi F (1996) Mechanisms of NADPH oxidase activation: translocation of p40phox, Rac1 and Rac2 from the cytosol to the membranes in human neutrophils lacking p47phox or p67phox. Biochem J 314(Pt 2):409–412

    PubMed  CAS  Google Scholar 

  47. de Mendez I, Homayounpour N, Leto TL (1997) Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation. Mol Cell Biol 17(4):2177–2185

    PubMed  Google Scholar 

  48. Koga H et al (1999) Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274(35):25051–25060

    Article  PubMed  CAS  Google Scholar 

  49. Nisimoto Y et al (1999) The p67(phox) activation domain regulates electron flow from NADPH to flavin in flavocytochrome b(558). J Biol Chem 274(33):22999–23005

    Article  PubMed  CAS  Google Scholar 

  50. Lavigne MC et al (2001) Genetic requirement of p47phox for superoxide production by murine microglia. FASEB J 15(2):285–287

    PubMed  CAS  Google Scholar 

  51. Lapouge K et al (2002) Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem 277(12):10121–10128

    Article  PubMed  CAS  Google Scholar 

  52. Massenet C et al (2005) Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox. Structural and functional comparison of p40phox and p67phox SH3 domains. J Biol Chem 280(14):13752–13761

    Article  PubMed  CAS  Google Scholar 

  53. Cross AR (2000) p40(phox) Participates in the activation of NADPH oxidase by increasing the affinity of p47(phox) for flavocytochrome b(558). Biochem J 349(Pt 1):113–117

    Article  PubMed  CAS  Google Scholar 

  54. Sarfstein R et al (2004) Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras. J Biol Chem 279(16):16007–16016

    Article  PubMed  CAS  Google Scholar 

  55. Park HS et al (2001) Phosphorylation of the leucocyte NADPH oxidase subunit p47(phox) by casein kinase 2: conformation-dependent phosphorylation and modulation of oxidase activity. Biochem J 358(Pt 3):783–790

    Article  PubMed  CAS  Google Scholar 

  56. Bey EA et al (2004) Protein kinase C delta is required for p47phox phosphorylation and translocation in activated human monocytes. J Immunol 173(9):5730–5738

    PubMed  CAS  Google Scholar 

  57. Dang PM et al (2001) Protein kinase C zeta phosphorylates a subset of selective sites of the NADPH oxidase component p47phox and participates in formyl peptide-mediated neutrophil respiratory burst. J Immunol 166(2):1206–1213

    PubMed  CAS  Google Scholar 

  58. El Benna J et al (1996) Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by two-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A, and a mitogen-activated protein kinase. J Biol Chem 271(11):6374–6378

    Article  PubMed  Google Scholar 

  59. Ward RA, Nakamura M, McLeish KR (2000) Priming of the neutrophil respiratory burst involves p38 mitogen-activated protein kinase-dependent exocytosis of flavocytochrome b558-containing granules. J Biol Chem 275(47):36713–36719

    Article  PubMed  CAS  Google Scholar 

  60. Dewas C et al (2000) The mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway is involved in formyl-methionyl-leucyl-phenylalanine-induced p47phox phosphorylation in human neutrophils. J Immunol 165(9):5238–5244

    PubMed  CAS  Google Scholar 

  61. El Benna J et al (1996) Activation of p38 in stimulated human neutrophils: phosphorylation of the oxidase component p47phox by p38 and ERK but not by JNK. Arch Biochem Biophys 334(2):395–400

    Article  PubMed  Google Scholar 

  62. Benna JE et al (1997) Phosphorylation of the respiratory burst oxidase subunit p67(phox) during human neutrophil activation. Regulation by protein kinase C-dependent and independent pathways. J Biol Chem 272(27):17204–17208

    Article  PubMed  CAS  Google Scholar 

  63. Dang PM et al (2003) Phosphorylation of the NADPH oxidase component p67(PHOX) by ERK2 and P38MAPK: selectivity of phosphorylated sites and existence of an intramolecular regulatory domain in the tetratricopeptide-rich region. Biochemistry 42(15):4520–4526

    Article  PubMed  CAS  Google Scholar 

  64. Rotrosen D et al (1992) Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256(5062):1459–1462

    Article  PubMed  CAS  Google Scholar 

  65. Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11(10):2481–2504

    Article  PubMed  CAS  Google Scholar 

  66. Green SP et al (2001) Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J Cereb Blood Flow Metab 21(4):374–384

    Article  PubMed  CAS  Google Scholar 

  67. Dohi K et al (2010) Gp91phox (NOX2) in classically activated microglia exacerbates traumatic brain injury. J Neuroinflammation 7:41

    Article  PubMed  CAS  Google Scholar 

  68. Tejada-Simon MV et al (2005) Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci 29(1):97–106

    Article  PubMed  CAS  Google Scholar 

  69. Tammariello SP, Quinn MT, Estus S (2000) NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci 20(1):RC53

    PubMed  CAS  Google Scholar 

  70. Thiels E, Klann E (2002) Hippocampal memory and plasticity in superoxide dismutase mutant mice. Physiol Behav 77(4–5):601–605

    Article  PubMed  CAS  Google Scholar 

  71. Knapp LT, Klann E (2002) Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res 70(1):1–7

    Article  PubMed  CAS  Google Scholar 

  72. Atkins CM, Sweatt JD (1999) Reactive oxygen species mediate activity-dependent neuron-glia signaling in output fibers of the hippocampus. J Neurosci 19(17):7241–7248

    PubMed  CAS  Google Scholar 

  73. Atkins CM et al (1997) Increased phosphorylation of myelin basic protein during hippocampal long-term potentiation. J Neurochem 68(5):1960–1967

    Article  PubMed  CAS  Google Scholar 

  74. Pascual O et al (2011) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 109(4):E197–E205

    Article  PubMed  Google Scholar 

  75. Abramov AY et al (2005) Expression and modulation of an NADPH oxidase in mammalian astrocytes. J Neurosci 25(40):9176–9184

    Article  PubMed  CAS  Google Scholar 

  76. Abramov AY, Canevari L, Duchen MR (2004) Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta 1742(1–3):81–87

    Article  PubMed  CAS  Google Scholar 

  77. Dickinson BC et al (2011) Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol 7(2):106–112

    Article  PubMed  CAS  Google Scholar 

  78. Clement HW et al (2010) Lipopolysaccharide-induced radical formation in the striatum is abolished in Nox2 gp91phox-deficient mice. J Neural Transm 117(1):13–22

    Article  PubMed  CAS  Google Scholar 

  79. Qin L et al (2005) Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 52(1):78–84

    Article  PubMed  Google Scholar 

  80. Bal-Price A, Matthias A, Brown GC (2002) Stimulation of the NADPH oxidase in activated rat microglia removes nitric oxide but induces peroxynitrite production. J Neurochem 80(1):73–80

    Article  PubMed  CAS  Google Scholar 

  81. Oh YT et al (2008) Lipopolysaccharide induces hypoxia-inducible factor-1 alpha mRNA expression and activation via NADPH oxidase and Sp1-dependent pathway in BV2 murine microglial cells. Neurosci Lett 431(2):155–160

    Article  PubMed  CAS  Google Scholar 

  82. Ueyama T et al (2004) Superoxide production at phagosomal cup/phagosome through beta I protein kinase C during Fc gamma R-mediated phagocytosis in microglia. J Immunol 173(7):4582–4589

    PubMed  CAS  Google Scholar 

  83. Rasmussen I et al (2010) Effects of F/G-actin ratio and actin turn-over rate on NADPH oxidase activity in microglia. BMC Immunol 11:44

    Article  PubMed  CAS  Google Scholar 

  84. Harrigan TJ et al (2008) Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases. J Neurochem 106(6):2449–2462

    Article  PubMed  CAS  Google Scholar 

  85. Ano Y et al (2010) Oxidative damage to neurons caused by the induction of microglial NADPH oxidase in encephalomyocarditis virus infection. Neurosci Lett 469(1):39–43

    Article  PubMed  CAS  Google Scholar 

  86. Gao X et al (2008) Formyl-methionyl-leucyl-phenylalanine-induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration? Environ Health Perspect 116(5):593–598

    Article  PubMed  CAS  Google Scholar 

  87. Park KW, Baik HH, Jin BK (2008) Interleukin-4-induced oxidative stress via microglial NADPH oxidase contributes to the death of hippocampal neurons in vivo. Curr Aging Sci 1(3):192–201

    Article  PubMed  CAS  Google Scholar 

  88. Park KW, Baik HH, Jin BK (2009) IL-13-induced oxidative stress via microglial NADPH oxidase contributes to death of hippocampal neurons in vivo. J Immunol 183(7):4666–4674

    Article  PubMed  CAS  Google Scholar 

  89. Qin L et al (2002) Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 83(4):973–983

    Article  PubMed  CAS  Google Scholar 

  90. Zhang W et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542

    Article  PubMed  CAS  Google Scholar 

  91. Zhang W et al (2007) Microglial PHOX and Mac-1 are essential to the enhanced dopaminergic neurodegeneration elicited by A30P and A53T mutant alpha-synuclein. Glia 55(11):1178–1188

    Article  PubMed  Google Scholar 

  92. Liu Y et al (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 26(50):12904–12913

    Article  PubMed  CAS  Google Scholar 

  93. Turchan-Cholewo J et al (2009) NADPH oxidase drives cytokine and neurotoxin release from microglia and macrophages in response to HIV-Tat. Antioxid Redox Signal 11(2):193–204

    Article  PubMed  CAS  Google Scholar 

  94. Gupta S et al (2010) HIV-Tat elicits microglial glutamate release: role of NAPDH oxidase and the cystine-glutamate antiporter. Neurosci Lett 485(3):233–236

    Article  PubMed  CAS  Google Scholar 

  95. Mander P, Brown GC (2005) Activation of microglial NADPH oxidase is synergistic with glial iNOS expression in inducing neuronal death: a dual-key mechanism of inflammatory neurodegeneration. J Neuroinflammation 2:20

    Article  PubMed  CAS  Google Scholar 

  96. Block ML, Hong JS (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35(Pt 5):1127–1132

    PubMed  CAS  Google Scholar 

  97. Kim YS et al (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J 21(1):179–187

    Article  PubMed  CAS  Google Scholar 

  98. Levesque S et al (2010) Reactive microgliosis: extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. Brain 133(Pt 3):808–821

    Article  PubMed  Google Scholar 

  99. Zhang W et al (2011) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res 19(1):63–72

    Article  PubMed  CAS  Google Scholar 

  100. Griendling KK et al (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74(6):1141–1148

    Article  PubMed  CAS  Google Scholar 

  101. Block ML et al (2006) Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin. FASEB J 20(2):251–258

    Article  PubMed  CAS  Google Scholar 

  102. Wu XF et al (2005) The role of microglia in paraquat-induced dopaminergic neurotoxicity. Antioxid Redox Signal 7(5–6):654–661

    Article  PubMed  CAS  Google Scholar 

  103. Gao HM, Liu B, Hong JS (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23(15):6181–6187

    PubMed  CAS  Google Scholar 

  104. Mao H et al (2007) Induction of microglial reactive oxygen species production by the organochlorinated pesticide dieldrin. Brain Res 1186:267–274

    Article  PubMed  CAS  Google Scholar 

  105. Block ML et al (2004) Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J 18(13):1618–1620

    PubMed  CAS  Google Scholar 

  106. Mao H, Liu B (2008) Synergistic microglial reactive oxygen species generation induced by pesticides lindane and dieldrin. Neuro Rep 19(13):1317–1320

    CAS  Google Scholar 

  107. Domico LM et al (2007) Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells. Neurotoxicology 28(6):1079–1091

    Article  PubMed  CAS  Google Scholar 

  108. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    PubMed  CAS  Google Scholar 

  109. Cederbaum AI, Dicker E, Cohen G (1980) Role of hydroxyl radicals in the iron-ethylenediaminetetraacetic acid mediated stimulation of microsomal oxidation of ethanol. Biochemistry 19(16):3698–3704

    Article  PubMed  CAS  Google Scholar 

  110. Morehouse KM, Mason RP (1988) The transition metal-mediated formation of the hydroxyl free radical during the reduction of molecular oxygen by ferredoxin–ferredoxin: NADP + oxidoreductase. J Biol Chem 263(3):1204–1211

    PubMed  CAS  Google Scholar 

  111. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92(9):3007–3017

    PubMed  CAS  Google Scholar 

  112. Sundar IK et al (2010) Oxidative stress, thiol redox signaling methods in epigenetics. Methods Enzymol 474:213–244

    Article  PubMed  CAS  Google Scholar 

  113. Brown GC, Neher JJ (2010) Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol Neurobiol 41(2–3):242–247

    Article  PubMed  CAS  Google Scholar 

  114. Kuhn DM et al (2004) Nitrotyrosine as a marker for peroxynitrite-induced neurotoxicity: the beginning or the end of the end of dopamine neurons? J Neurochem 89(3):529–536

    Article  PubMed  CAS  Google Scholar 

  115. Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12

    PubMed  Google Scholar 

  116. Ushio-Fukai M (2009) Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 11(6):1289–1299

    Article  PubMed  CAS  Google Scholar 

  117. Chiarugi P, Cirri P (2003) Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends Biochem Sci 28(9):509–514

    Article  PubMed  CAS  Google Scholar 

  118. Abate C et al (1990) Redox regulation of fos and jun DNA-binding activity in vitro. Science 249(4973):1157–1161

    Article  PubMed  CAS  Google Scholar 

  119. Galter D, Mihm S, Droge W (1994) Distinct effects of glutathione disulphide on the nuclear transcription factor kappa B and the activator protein-1. Eur J Biochem 221(2):639–648

    Article  PubMed  CAS  Google Scholar 

  120. Bloom D, Dhakshinamoorthy S, Jaiswal AK (2002) Site-directed mutagenesis of cysteine to serine in the DNA binding region of Nrf2 decreases its capacity to upregulate antioxidant response element-mediated expression and antioxidant induction of NAD(P)H: quinone oxidoreductase1 gene. Oncogene 21(14):2191–2200

    Article  PubMed  CAS  Google Scholar 

  121. Hainaut P, Milner J (1993) Redox modulation of p53 conformation and sequence-specific DNA binding in vitro. Cancer Res 53(19):4469–4473

    PubMed  CAS  Google Scholar 

  122. Bodwell JE, Holbrook NJ, Munck A (1984) Sulfhydryl-modifying reagents reversibly inhibit binding of glucocorticoid-receptor complexes to DNA-cellulose. Biochemistry 23(7):1392–1398

    Article  PubMed  CAS  Google Scholar 

  123. Lin MT et al (2003) Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol Pharmacol 64(5):1029–1036

    Article  PubMed  CAS  Google Scholar 

  124. Nawroth R et al (2002) VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J 21(18):4885–4895

    Article  PubMed  CAS  Google Scholar 

  125. Wu RF et al (2005) Subcellular targeting of oxidants during endothelial cell migration. J Cell Biol 171(5):893–904

    Article  PubMed  CAS  Google Scholar 

  126. Wang T et al (2004) Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 88(4):939–947

    Article  PubMed  CAS  Google Scholar 

  127. Terry MJ, Maines MD, Lagarias JC (1993) Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J Biol Chem 268(35):26099–26106

    PubMed  CAS  Google Scholar 

  128. Gao HM et al (2003) Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. J Neurosci 23(4):1228–1236

    PubMed  CAS  Google Scholar 

  129. Purisai MG et al (2007) Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis 25(2):392–400

    Article  PubMed  CAS  Google Scholar 

  130. Wu DC et al (2006) The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci USA 103(32):12132–12137

    Article  PubMed  CAS  Google Scholar 

  131. Li Q et al (2011) Alsin and SOD1(G93A) proteins regulate endosomal reactive oxygen species production by glial cells and proinflammatory pathways responsible for neurotoxicity. J Biol Chem 286(46):40151–40162

    Article  PubMed  CAS  Google Scholar 

  132. Chechneva OV et al (2011) Low dose dextromethorphan attenuates moderate experimental autoimmune encephalomyelitis by inhibiting NOX2 and reducing peripheral immune cells infiltration in the spinal cord. Neurobiol Dis 44(1):63–72

    Article  PubMed  CAS  Google Scholar 

  133. Schiavone S et al (2009) Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biol Psychiatry 66(4):384–392

    Article  PubMed  CAS  Google Scholar 

  134. Chen H et al (2011) NADPH oxidase is involved in post-ischemic brain inflammation. Neurobiol Dis 42(3):341–348

    Article  PubMed  CAS  Google Scholar 

  135. De Silva TM et al (2011) Nox2 Oxidase activity accounts for the oxidative stress and vasomotor dysfunction in mouse cerebral arteries following ischemic stroke. PLoS ONE 6(12):e28393

    Article  PubMed  CAS  Google Scholar 

  136. Kim D et al (2010) NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve injury-induced neuropathic pain. Proc Natl Acad Sci USA 107(33):14851–14856

    Article  PubMed  CAS  Google Scholar 

  137. Berger JV et al (2011) Enhanced neuroinflammation and pain hypersensitivity after peripheral nerve injury in rats expressing mutated superoxide dismutase 1. J Neuroinflammation 8:33

    Article  PubMed  CAS  Google Scholar 

  138. Chakrabarti L et al (1991) Early viral replication in the brain of SIV-infected rhesus monkeys. Am J Pathol 139(6):1273–1280

    PubMed  CAS  Google Scholar 

  139. Lo W et al (2007) NADPH oxidase inhibition improves neurological outcomes in surgically-induced brain injury. Neurosci Lett 414(3):228–232

    Article  PubMed  CAS  Google Scholar 

  140. Behrens MM et al (2007) Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science 318(5856):1645–1647

    Article  PubMed  CAS  Google Scholar 

  141. Sorce S et al (2010) The NADPH oxidase NOX2 controls glutamate release: a novel mechanism involved in psychosis-like ketamine responses. J Neurosci 30(34):11317–11325

    Article  PubMed  CAS  Google Scholar 

  142. Shimohama S et al (2000) Activation of NADPH oxidase in Alzheimer’s disease brains. Biochem Biophys Res Commun 273(1):5–9

    Article  PubMed  CAS  Google Scholar 

  143. Wu DC et al (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 100(10):6145–6150

    Article  PubMed  CAS  Google Scholar 

  144. Hirtz D et al (2007) How common are the “common” neurologic disorders? Neurology 68(5):326–337

    Article  PubMed  CAS  Google Scholar 

  145. Wimo A, Jonsson L, Winblad B (2006) An estimate of the worldwide prevalence and direct costs of dementia in 2003. Dement Geriatr Cogn Disord 21(3):175–181

    Article  PubMed  CAS  Google Scholar 

  146. Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 2:R183–R194

    Article  CAS  Google Scholar 

  147. Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7(4):354–365

    Article  PubMed  CAS  Google Scholar 

  148. McGeer EG, McGeer PL (2010) Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 19(1):355–361

    PubMed  Google Scholar 

  149. Ansari MA, Scheff SW (2011) NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic Biol Med 51(1):171–178

    Article  PubMed  CAS  Google Scholar 

  150. Jackson-Lewis V, Przedborski S (2007) Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2(1):141–151

    Article  PubMed  CAS  Google Scholar 

  151. Langston JW, Ballard P (1984) Parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson’s disease. Can J Neurol Sci 11(1 Suppl):160–165

    PubMed  CAS  Google Scholar 

  152. Langston JW, Irwin I, DeLanney LE (1987) The biotransformation of MPTP and disposition of MPP+: the effects of aging. Life Sci 40(8):749–754

    Article  PubMed  CAS  Google Scholar 

  153. Zhao Y et al (2009) Effects of CYP3A5, MDR1 and CACNA1C polymorphisms on the oral disposition and response of nimodipine in a Chinese cohort. Eur J Clin Pharmacol 65(6):579–584

    Article  PubMed  CAS  Google Scholar 

  154. Gandhi S et al (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33(5):627–638

    Article  PubMed  CAS  Google Scholar 

  155. Hu X et al (2008) Macrophage antigen complex-1 mediates reactive microgliosis and progressive dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. J Immunol 181(10):7194–7204

    PubMed  CAS  Google Scholar 

  156. Gao HM et al (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J 17(13):1954–1956

    PubMed  CAS  Google Scholar 

  157. McCarty MF, Barroso-Aranda J, Contreras F (2010) Oral phycocyanobilin may diminish the pathogenicity of activated brain microglia in neurodegenerative disorders. Med Hypotheses 74(3):601–605

    Article  PubMed  CAS  Google Scholar 

  158. Chung YC et al (2011) Cannabinoid receptor type 1 protects nigrostriatal dopaminergic neurons against MPTP neurotoxicity by inhibiting microglial activation. J Immunol 187(12):6508–6517

    Article  PubMed  CAS  Google Scholar 

  159. Chung YC et al (2011) Fluoxetine prevents MPTP-induced loss of dopaminergic neurons by inhibiting microglial activation. Neuropharmacology 60(6):963–974

    Article  PubMed  CAS  Google Scholar 

  160. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110

    Article  PubMed  CAS  Google Scholar 

  161. Luthman J et al (1989) Effects of d-amphetamine and methylphenidate on hyperactivity produced by neonatal 6-hydroxydopamine treatment. Psychopharmacology 99(4):550–557

    Article  PubMed  CAS  Google Scholar 

  162. Mazzio EA, Reams RR, Soliman KF (2004) The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro. Brain Res 1004(1–2):29–44

    Article  PubMed  CAS  Google Scholar 

  163. Glinka Y, Gassen M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 50:55–66

    PubMed  CAS  Google Scholar 

  164. Rodriguez-Pallares J et al (2007) Mechanism of 6-hydroxydopamine neurotoxicity: the role of NADPH oxidase and microglial activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. J Neurochem 103(1):145–156

    PubMed  CAS  Google Scholar 

  165. Rodriguez-Pallares J et al (2008) Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol Dis 31(1):58–73

    Article  PubMed  CAS  Google Scholar 

  166. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26(6):1049–1055

    Article  PubMed  Google Scholar 

  167. Mangano EN et al (2011) Interferon-gamma plays a role in paraquat-induced neurodegeneration involving oxidative and proinflammatory pathways. Neurobiol Aging. doi:10.1016/j/neurobiolaging.2011.02.016

  168. Danilov CA et al (2009) Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia 57(6):645–656

    Article  PubMed  Google Scholar 

  169. Hu LF et al (2010) Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 9(2):135–146

    Article  PubMed  CAS  Google Scholar 

  170. Possel H et al (2000) Selective upregulation of inducible nitric oxide synthase (iNOS) by lipopolysaccharide (LPS) and cytokines in microglia: in vitro and in vivo studies. Glia 32(1):51–59

    Article  PubMed  CAS  Google Scholar 

  171. McGeer PL et al (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79(1–2):195–200

    Article  PubMed  CAS  Google Scholar 

  172. Sasaki A et al (1997) Microglial activation in early stages of amyloid beta protein deposition. Acta Neuropathol (Berl) 94(4):316–322

    Article  CAS  Google Scholar 

  173. Meda L et al (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374(6523):647–650

    Article  PubMed  CAS  Google Scholar 

  174. Li M, Sunamoto M, Ohnishi K, Ichimori Y (1996) Beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res 720(1–2):93–100

    Google Scholar 

  175. Wilkinson BL, Landreth GE (2006) The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflammation 3:30

    Article  PubMed  CAS  Google Scholar 

  176. Dheen ST et al (2004) Retinoic acid inhibits expression of TNF-alpha and iNOS in activated rat microglia. Glia 50:21–31

    Article  Google Scholar 

  177. Combs CK et al (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20(2):558–567

    PubMed  CAS  Google Scholar 

  178. Griffin WS et al (1998) Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 8(1):65–72

    Article  PubMed  CAS  Google Scholar 

  179. Reed-Geaghan EG et al (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 29(38):11982–11992

    Article  PubMed  CAS  Google Scholar 

  180. Wilkinson BL, Landreth GE (2006) The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflammation 3(1):30

    Article  PubMed  CAS  Google Scholar 

  181. Park L et al (2005) NADPH-oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid beta peptide. J Neurosci 25(7):1769–1777

    Article  PubMed  CAS  Google Scholar 

  182. Hsiao KK et al (1995) Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15(5):1203–1218

    Article  PubMed  CAS  Google Scholar 

  183. Hsiao K et al (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102

    Article  PubMed  CAS  Google Scholar 

  184. Park L et al (2008) Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA 105(4):1347–1352

    Article  PubMed  CAS  Google Scholar 

  185. Chishti MA et al (2001) Early onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J Biol Chem 276(24):21562–21570

    Article  PubMed  CAS  Google Scholar 

  186. Hashimoto Y et al (2002) Neurotoxic mechanisms by Alzheimer’s disease-linked N141I mutant presenilin 2. J Pharmacol Exp Ther 300(3):736–745

    Article  PubMed  CAS  Google Scholar 

  187. Rockenstein E et al (2001) Early formation of mature amyloid-beta protein deposits in a mutant APP transgenic model depends on levels of Abeta(1-42). J Neurosci Res 66(4):573–582

    Article  PubMed  CAS  Google Scholar 

  188. Hutter-Paier B et al (2004) The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer’s disease. Neuron 44(2):227–238

    Article  PubMed  CAS  Google Scholar 

  189. Willis M et al (2007) Localization and expression of substance P in transgenic mice overexpressing human APP751 with the London (V717I) and Swedish (K670M/N671L) mutations. Brain Res 1143:199–207

    Article  PubMed  CAS  Google Scholar 

  190. Qin B et al (2006) A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging 27(11):1577–1587

    Article  PubMed  CAS  Google Scholar 

  191. Wilkinson B et al (2006) Fibrillar beta-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia. J Biol Chem 281(30):20842–20850

    Article  PubMed  CAS  Google Scholar 

  192. de la Monte SM, Wands JR (2006) Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimers Dis 9(2):167–181

    PubMed  Google Scholar 

  193. Jaquet V et al (2009) Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 11(10):2535–2552

    Article  PubMed  CAS  Google Scholar 

  194. Qian L et al (2007) NADPH oxidase inhibitor DPI is neuroprotective at femtomolar concentrations through inhibition of microglia over-activation. Parkinsonism Relat Disord 13(Suppl 3):S316–S320

    Article  PubMed  Google Scholar 

  195. Qian L et al (2007) Microglia-mediated neurotoxicity is inhibited by morphine through an opioid receptor-independent reduction of NADPH oxidase activity. J Immunol 179(2):1198–1209

    PubMed  CAS  Google Scholar 

  196. Qian L et al (2007) Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase. J Neuroinflammation 4:23

    Article  PubMed  CAS  Google Scholar 

  197. Wang XJ et al (2011) Impaired CD200-CD200R-mediated microglia silencing enhances midbrain dopaminergic neurodegeneration: Roles of aging, superoxide, NADPH oxidase, and p38 MAPK. Free Radic Biol Med 50(9):1094–1106

    Article  PubMed  CAS  Google Scholar 

  198. Li G et al (2005) Femtomolar concentrations of dextromethorphan protect mesencephalic dopaminergic neurons from inflammatory damage. FASEB J 19(6):489–496

    Article  PubMed  CAS  Google Scholar 

  199. Qin L et al (2005) Microglial NADPH oxidase mediates leucine enkephalin dopaminergic neuroprotection. Ann NY Acad Sci 1053:107–120

    Article  PubMed  CAS  Google Scholar 

  200. Yang S et al (2006) Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: potent regulators of microglia-mediated oxidative stress. J Pharmacol Exp Ther 319(2):595–603

    Article  PubMed  CAS  Google Scholar 

  201. Liu Y et al (2011) Verapamil protects dopaminergic neuron damage through a novel anti-inflammatory mechanism by inhibition of microglial activation. Neuropharmacology 60(2–3):373–380

    Article  PubMed  CAS  Google Scholar 

  202. Wu HM et al (2009) Novel neuroprotective mechanisms of memantine: increase in neurotrophic factor release from astroglia and anti-inflammation by preventing microglial activation. Neuropsychopharmacology 34(10):2344–2357

    Article  PubMed  CAS  Google Scholar 

  203. Heumuller S et al (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51(2):211–217

    Article  PubMed  CAS  Google Scholar 

  204. Ma T et al (2011) Amyloid {beta}-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. J Neurosci 31(15):5589–5595

    Article  PubMed  CAS  Google Scholar 

  205. He Y et al (2011) Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (−)-epigallocatechin-3-gallate. ASN Neuro 3:e00050

    Article  PubMed  CAS  Google Scholar 

  206. Diep QN et al (2002) PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 40(6):866–871

    Article  PubMed  CAS  Google Scholar 

  207. Wu GS, Rao NA (1999) Activation of NADPH oxidase by docosahexaenoic acid hydroperoxide and its inhibition by a novel retinal pigment epithelial protein. Invest Ophthalmol Vis Sci 40(5):831–839

    PubMed  CAS  Google Scholar 

  208. Lu DY et al (2010) Docosahexaenoic acid suppresses neuroinflammatory responses and induces heme oxygenase-1 expression in BV-2 microglia: implications of antidepressant effects for omega-3 fatty acids. Neuropsychopharmacology 35(11):2238–2248

    Article  PubMed  CAS  Google Scholar 

  209. De Smedt-Peyrusse V et al (2008) Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J Neurochem 105(2):296–307

    Article  PubMed  CAS  Google Scholar 

  210. Wahner AD et al (2008) Statin use and the risk of Parkinson disease. Neurology 70(16 Pt 2):1418–1422

    Article  PubMed  CAS  Google Scholar 

  211. Reiss AB, Wirkowski E (2009) Statins in neurological disorders: mechanisms and therapeutic value. Sci World J 9:1242–1259

    Article  CAS  Google Scholar 

  212. Wassmann S et al (2001) Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol 59(3):646–654

    PubMed  CAS  Google Scholar 

  213. Roy A, Pahan K (2011) Prospects of statins in Parkinson disease. Neuroscientist 17(3):244–255

    Article  PubMed  CAS  Google Scholar 

  214. Molnar G et al (2001) Role of prenylation in the interaction of Rho-family small GTPases with GTPase activating proteins. Biochemistry 40(35):10542–10549

    Article  PubMed  CAS  Google Scholar 

  215. Ghosh A et al (2009) Simvastatin inhibits the activation of p21ras and prevents the loss of dopaminergic neurons in a mouse model of Parkinson’s disease. J Neurosci 29(43):13543–13556

    Article  PubMed  CAS  Google Scholar 

  216. Cordle A, Landreth G (2005) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate beta-amyloid-induced microglial inflammatory responses. J Neurosci 25(2):299–307

    Article  PubMed  CAS  Google Scholar 

  217. Becker C, Jick S, Meier CR (2011) NSAID use and risk of Parkinson disease: a population-based case-control study. Eur J Neurol 18(11):1336–1342

    Article  PubMed  CAS  Google Scholar 

  218. Becker C, Jick SS, Meier CR (2011) NSAID use and risk of Parkinson disease: a population-based case-control study. Eur J Neurol 18(11):1336–1342

    Article  PubMed  CAS  Google Scholar 

  219. Schiess M (2003) Nonsteroidal anti-inflammatory drugs protect against Parkinson neurodegeneration: can an NSAID a day keep Parkinson disease away? Arch Neurol 60(8):1043–1044

    Article  PubMed  Google Scholar 

  220. Samii A et al (2009) NSAID use and the risk of Parkinson’s disease: systematic review and meta-analysis of observational studies. Drugs Aging 26(9):769–779

    Article  PubMed  CAS  Google Scholar 

  221. Raz L et al (2010) Role of Rac1 GTPase in NADPH oxidase activation and cognitive impairment following cerebral ischemia in the rat. PLoS ONE 5(9):e12606

    Article  PubMed  CAS  Google Scholar 

  222. Wilkinson BL et al. (2012) Ibuprofen attenuates oxidative damage through NOX2 inhibition in Alzheimer’s disease. Neurobiol Aging 33(1):197.e21–197.e32

    Article  CAS  Google Scholar 

  223. Martyn KD et al (2005) p21-activated kinase (Pak) regulates NADPH oxidase activation in human neutrophils. Blood 106(12):3962–3969

    Article  PubMed  CAS  Google Scholar 

  224. Zhang F et al (2010) Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol Pharmacol 78(3):466–477

    Article  PubMed  CAS  Google Scholar 

  225. Zhang F et al (2010) Inhibition of IkappaB kinase-beta protects dopamine neurons against lipopolysaccharide-induced neurotoxicity. J Pharmacol Exp Ther 333(3):822–833

    Article  PubMed  CAS  Google Scholar 

  226. Tominaga K et al (2004) Correlation of MAP kinases with COX-2 induction differs between MKN45 and HT29 cells. Aliment Pharmacol Ther 20(Suppl 1):143–150

    Article  PubMed  CAS  Google Scholar 

  227. Lali FV et al (2000) The pyridinyl imidazole inhibitor SB203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase. J Biol Chem 275(10):7395–7402

    Article  PubMed  CAS  Google Scholar 

  228. Qian L et al (2008) Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia. J Immunol 181(1):660–668

    PubMed  CAS  Google Scholar 

  229. Riederer P et al (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52(2):515–520

    Article  PubMed  CAS  Google Scholar 

  230. Biberstine-Kinkade KJ et al (2001) Heme-ligating histidines in flavocytochrome b(558): identification of specific histidines in gp91(phox). J Biol Chem 276(33):31105–31112

    Article  PubMed  CAS  Google Scholar 

  231. Li L, Frei B (2006) Iron chelation inhibits NF-kappaB-mediated adhesion molecule expression by inhibiting p22(phox) protein expression and NADPH oxidase activity. Arterioscler Thromb Vasc Biol 26(12):2638–2643

    Article  PubMed  CAS  Google Scholar 

  232. Collins HL, Kaufmann SH, Schaible UE (2002) Iron chelation via deferoxamine exacerbates experimental salmonellosis via inhibition of the nicotinamide adenine dinucleotide phosphate oxidase-dependent respiratory burst. J Immunol 168(7):3458–3463

    PubMed  CAS  Google Scholar 

  233. Jin J et al (2007) Prostaglandin E2 receptor subtype 2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated alpha-synuclein. J Neuroinflammation 4:2

    Article  PubMed  CAS  Google Scholar 

  234. Choi SH et al (2005) Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: role of microglial NADPH oxidase. J Neurosci 25(16):4082–4090

    Article  PubMed  CAS  Google Scholar 

  235. Won SY, Choi SH, Jin BK (2009) Prothrombin kringle-2-induced oxidative stress contributes to the death of cortical neurons in vivo and in vitro: role of microglial NADPH oxidase. J Neuroimmunol 214(1–2):83–92

    Article  PubMed  CAS  Google Scholar 

  236. Min KJ et al (2004) Gangliosides activate microglia via protein kinase C and NADPH oxidase. Glia 48(3):197–206

    Article  PubMed  Google Scholar 

  237. Gao HM et al (2011) HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci 31(3):1081–1092

    Article  PubMed  CAS  Google Scholar 

  238. Kauppinen TM et al (2008) Zinc triggers microglial activation. J Neurosci 28(22):5827–5835

    Article  PubMed  CAS  Google Scholar 

  239. Yang CS et al (2007) Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia. J Neuroinflammation 4:27

    Article  PubMed  CAS  Google Scholar 

  240. Lull ME et al (2011) Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP(751)(SL) mice. PLoS ONE 6(5):e20153

    Article  PubMed  CAS  Google Scholar 

  241. Moon JH et al (2008) Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar beta amyloid peptide (1-42)-stimulated microglia. Exp Mol Med 40(1):11–18

    Article  PubMed  CAS  Google Scholar 

  242. Zhou J et al (2008) Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-beta1-42. J Pineal Res 45(2):157–165

    Article  PubMed  CAS  Google Scholar 

  243. Qian L et al (2006) Interleukin-10 protects lipopolysaccharide-induced neurotoxicity in primary midbrain cultures by inhibiting the function of NADPH oxidase. J Pharmacol Exp Ther 319(1):44–52

    Article  PubMed  CAS  Google Scholar 

  244. Qin L et al (2005) Microglial NADPH oxidase is a novel target for femtomolar neuroprotection against oxidative stress. FASEB J 19(6):550–557

    Article  PubMed  CAS  Google Scholar 

  245. Zhang W et al (2004) Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase. FASEB J 18(3):589–591

    PubMed  CAS  Google Scholar 

  246. Lin YC et al (2007) Neuroprotective effects of glyceryl nonivamide against microglia-like cells and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells. J Pharmacol Exp Ther 323(3):877–887

    Article  PubMed  CAS  Google Scholar 

  247. Choi SH et al (2005) Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. J Neurochem 95(6):1755–1765

    Article  PubMed  CAS  Google Scholar 

  248. Chung YC, Kim SR, Jin BK (2010) Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson’s disease. J Immunol 185(2):1230–1237

    Article  PubMed  CAS  Google Scholar 

  249. Li Y et al (2009) Nimodipine protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. Neuropharmacology 56(3):580–589

    Article  PubMed  CAS  Google Scholar 

  250. Murotomi K et al (2010) mGluR1 antagonist decreased NADPH oxidase activity and superoxide production after transient focal cerebral ischemia. J Neurochem 114(6):1711–1719

    Article  PubMed  CAS  Google Scholar 

  251. Chern, C.M., et al., (2011) Andrographolide inhibits PI3 K/AKT-dependent NOX2 and iNOS expression protecting mice against hypoxia/ischemia-induced oxidative brain injury. Planta Med 77:1–11

    Google Scholar 

  252. Woodfin A et al (2011) Acute NADPH oxidase activation potentiates cerebrovascular permeability response to bradykinin in ischemia-reperfusion. Free Radic Biol Med 50(4):518–524

    Article  PubMed  CAS  Google Scholar 

  253. Chen H, Song YS, Chan PH (2009) Inhibition of NADPH oxidase is neuroprotective after ischemia-reperfusion. J Cereb Blood Flow Metab 29(7):1262–1272

    Article  PubMed  CAS  Google Scholar 

  254. Hong H et al (2006) Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 291(5):H2210–H2215

    Article  PubMed  CAS  Google Scholar 

  255. Kato TA et al (2011) Aripiprazole inhibits superoxide generation from phorbol-myristate-acetate (PMA)-stimulated microglia in vitro: Implication for antioxidative psychotropic actions via microglia. Schizophr Res 129(2–3):172–182

    Article  PubMed  Google Scholar 

  256. Loane DJ et al (2009) Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J Biol Chem 284(23):15629–15639

    Article  PubMed  CAS  Google Scholar 

  257. El-Remessy AB et al (2008) Neuroprotective effects of cannabidiol in endotoxin-induced uveitis: critical role of p38 MAPK activation. Mol Vis 14:2190–2203

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Block.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surace, M.J., Block, M.L. Targeting microglia-mediated neurotoxicity: the potential of NOX2 inhibitors. Cell. Mol. Life Sci. 69, 2409–2427 (2012). https://doi.org/10.1007/s00018-012-1015-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1015-4

Keywords

Navigation