, Volume 66, Issue 3, pp 504-515

The role of P-glycoprotein/cellular prion protein interaction in multidrug-resistant breast cancer cells treated with paclitaxel

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We previously reported that treatment with P-glycoprotein (P-gp) substrates promotes in vitro invasion in multidrug-resistant (MDR) breast cancer cells. This effect is initiated by the P-gp pump function and mediated by interaction of P-gp with some unknown component(s). However, the underlying mechanism(s) remains poorly understood. Here we confirm a novel physical interaction between P-gp and cellular prion protein (PrPc). Blocking P-gp activity or depletion of PrPc inhibited paclitaxel (P-gp substrate)- induced invasion. Paclitaxel further facilitated the formation of P-gp/PrPc clusters residing in caveolar domains and promoted the association of P-gp with caveolin-1. Both caveolin-1 and the integrity of caveolae were required for the drug-induced invasion. In addition, the P-gp/PrPc complex also played an important role in anti-apoptotic activity of MCF7/Adr cells.These data provide new insights into the mode by which MDR breast cancers evade cytotoxic attacks from P-gp substrates and also suggest a role for P-gp/ PrPc interaction in this process.

Received 4 September 2008; received after revision 16 November 2008; accepted 18 November 2008