Skip to main content
Log in

On the Błocki–Zwonek conjectures and beyond

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let \({\Omega}\) be a bounded pseudoconvex domain in \({\mathbb{C}^n}\), and let \({g_{\Omega}(z,a)}\) be the pluricomplex Green function with pole at a in \({\Omega}\). Błocki and Zwonek conjectured that the function given by

$$\begin{array}{ll}\alpha = \alpha_{\Omega}, a: (- \infty, 0) \ni t \mapsto \alpha (t) = e^{-2nt} \lambda_n \left( \{z \in \Omega: g_{\Omega}(z, a) < t \} \right)\end{array}$$

is nondecreasing, and that the function given by

$$\begin{array}{ll}\beta = \beta_{\Omega}, a: (-\infty, 0) \ni t \to \beta(t)= \log \left(\lambda_n \left(\{z \in \Omega: g_{\Omega}(z,a)< t\}\right)\right)\end{array}$$

is convex. Here \({\lambda_{n}}\) is the Lebesgue measure in \({\mathbb{C}^n}\). In this note we give an affirmative answer to these conjectures when \({\Omega}\) is biholomorphic to a bounded, balanced, and pseudoconvex domain in \({\mathbb{C}^n}\), \({n\geq 1}\). The aim of this note is to consider generalizations of the functions \({\alpha}\), \({\beta}\) defined by the Green function with two poles in \({\mathbb{D}\subset\mathbb{C}}\). We prove that \({\alpha}\) is not nondecreasing, and \({\beta}\) is not convex. By using the product property for pluricomplex Green functions, we then generalize this to n-dimensions. Finally, we end this note by considering two other possibilities generalizing the Błocki–Zwonek conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åhag P., Czyż R.: On the Błocki–Zwonek conjectures. Complex Var. Elliptic Equ. 60, 1270–1276 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bergman S.: Über die Entwicklung der harmonischen Funktionen der Ebene und des Raumes nach Orthogonal funktionen. Math. Ann. 86, 238–271 (1922)

    Article  MathSciNet  Google Scholar 

  3. Berndtsson B.: Prekopa’s theorem and Kiselman’s minimum principle for plurisubharmonic functions. Math. Ann. 312, 785–792 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Berndtsson, Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann. Inst. Fourier (Grenoble) 56 (2006), 1633–1662.

  5. Z. Błocki, A lower bound for the Bergman kernel and the Bourgain-Milman inequality, Geometric Aspects of Functional Analysis, Israel Seminar (GAFA) 2011–2013. In: Klartag B, Milmaneds E, editors. Lecture Notes in Mathematics 2116. Cham: Springer; 2014. p. 53–63.

  6. Błocki Z.: Cauchy-Riemann meet Monge-Ampère. Bulletin of Mathematical Sciences 4, 433–480 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Błocki Z., Zwonek W.: Estimates for the Bergman kernel and the multidimensional Suita conjecture. New York J. Math. 21, 151–161 (2015)

    MathSciNet  MATH  Google Scholar 

  8. J. E. Fornæss, On a conjecture by Błocki–Zwonek. Manuscript arXiv:1507.05003.

  9. L.-K. Hua, Harmonic analysis of functions of several complex variables in the classical domains. Translated from the Russian by Leo Ebner and Adam Korányi American Mathematical Society, Providence, R.I. 1963.

  10. M. Jarnicki and P. Pflug, Invariant distances and metrics in complex analysis. Second extended edition. de Gruyter Expositions in Mathematics, 9. Walter de Gruyter GmbH & Co. KG, Berlin, 2013.

  11. S. G. Krantz, Geometric analysis of the Bergman kernel and metric. Graduate Texts in Mathematics, 268. Springer, New York, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Åhag.

Additional information

The first-named author was partially supported by the Lars Hierta Memorial Foundation. The second-named author was partially supported by NCN grant DEC-2013/08/A/ST1/00312.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Åhag, P., Czyż, R. On the Błocki–Zwonek conjectures and beyond. Arch. Math. 105, 371–380 (2015). https://doi.org/10.1007/s00013-015-0810-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-015-0810-1

Mathematics Subject Classification

Keywords

Navigation