Archiv der Mathematik

, 93:451

Sequentially Cohen–Macaulay bipartite graphs: vertex decomposability and regularity


DOI: 10.1007/s00013-009-0049-9

Cite this article as:
Van Tuyl, A. Arch. Math. (2009) 93: 451. doi:10.1007/s00013-009-0049-9


Let G be a bipartite graph with edge ideal I(G) whose quotient ring R/I(G) is sequentially Cohen–Macaulay. We prove: (1) the independence complex of G must be vertex decomposable, and (2) the Castelnuovo–Mumford regularity of R/I(G) can be determined from the invariants of G.

Mathematics Subject Classification (2000)



Sequentially Cohen–MacaulayEdge idealsBipartite graphsVertex decomposableShellable complexCastelnuovo–Mumford regularity

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2009

Authors and Affiliations

  1. 1.Department of Mathematical SciencesLakehead UniversityThunder BayCanada