Archiv der Mathematik

, Volume 89, Issue 5, pp 419–429

Metrical characterization of super-reflexivity and linear type of Banach spaces

Open AccessArticle

DOI: 10.1007/s00013-007-2108-4

Cite this article as:
Baudier, F. Arch. Math. (2007) 89: 419. doi:10.1007/s00013-007-2108-4


We prove that a Banach space X is not super-reflexive if and only if the hyperbolic infinite tree embeds metrically into X. We improve one implication of J.Bourgain’s result who gave a metrical characterization of super-reflexivity in Banach spaces in terms of uniform embeddings of the finite trees. A characterization of the linear type for Banach spaces is given using the embedding of the infinite tree equipped with the metrics dp induced by the p norms.

Mathematics Subject Classification (2000).



Super-reflexivitytreeslinear typemetric embedding
Download to read the full article text

Copyright information

©  2007

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques, UMR 6623Université de Franche-ComtéBesançon, cedexFrance