Archiv der Mathematik

, Volume 88, Issue 1, pp 71–76

Perelman’s invariant, Ricci flow, and the Yamabe invariants of smooth manifolds

Open Access

DOI: 10.1007/s00013-006-2181-0

Cite this article as:
Akutagawa, K., Ishida, M. & LeBrun, C. Arch. Math. (2007) 88: 71. doi:10.1007/s00013-006-2181-0


In his study of Ricci flow, Perelman introduced a smooth-manifold invariant called \(\bar{\lambda}\). We show here that, for completely elementary reasons, this invariant simply equals the Yamabe invariant, alias the sigma constant, whenever the latter is non-positive. On the other hand, the Perelman invariant just equals +∞ whenever the Yamabe invariant is positive.

Mathematics Subject Classification (2000).

Primary 53C21 Secondary 58J50 


Scalar curvature Ricci flow conformal geometry Perelman invariant Yamabe problem 
Download to read the full article text

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2006

Authors and Affiliations

  • Kazuo Akutagawa
    • 1
  • Masashi Ishida
    • 2
    • 3
  • Claude LeBrun
    • 2
  1. 1.Dept. MathematicsTokyo Univ. of ScienceNodaJapan
  2. 2.Department of MathematicsSUNYStony BrookUSA
  3. 3.Department of MathematicsSophia UniversityTokyoJapan

Personalised recommendations