, Volume 49, Issue 4, pp 459-471

Exponentiation and Euler measure

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Two of the pillars of combinatorics are the notion of choosing an arbitrary subset of a set with n elements (which can be done in 2 n ways), and the notion of choosing a k-element subset of a set with n elements (which can be done in \( n \choose k \) ways). In this article I sketch the beginnings of a theory that would import these notions into the category of hedral sets in the sense of Morelli and the category of polyhedral sets in the sense of Schanuel. Both of these theories can be viewed as extensions of the theory of finite sets and mappings between finite sets, with the concept of cardinality being replaced by the more general notion of Euler measure (sometimes called combinatorial Euler characteristic). I prove a “functoriality” theorem (Theorem 1) for subset-selection in the context of polyhedral sets, which provides quasi-combinatorial interpretations of assertions such as \( 2^{-1} = {1 \over 2} \quad\mathrm{and}\quad{{1/2} \choose {2}} = -{1 \over 8} \) . Furthermore, the operation of forming a power set can be viewed as a special case of the operation of forming the set of all mappings from one set to another; I conclude the article with a polyhedral analogue of the set of all mappings between two finite sets, and a restrictive but suggestive result (Theorem 2) that offers a hint of what a general theory of exponentiation in the polyhedral category might look like. (Other glimpses into the theory may be found in [11].)

Dedicated to the Memory of Gian-Carlo Rota