Skip to main content

Advertisement

Log in

Fisetin inhibits high-glucose-induced vascular inflammation in vitro and in vivo

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Aim and objective

Fisetin, an active compound isolated from flowering plants in the family Fabaceae, was reported to have antiviral, neuroprotective, and anti-inflammatory effects. Vascular inflammatory processes have been suggested to play key roles in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Thus, we determined the ability of fisetin to suppress vascular inflammatory processes induced by high glucose (HG) in primary human umbilical vein endothelial cells (HUVECs) and mice.

Methods

The effects of fisetin on HG-induced vascular inflammation were determined by measuring vascular permeability, leukocyte adhesion and migration, cell adhesion molecule (CAM) expression levels, reactive oxygen species (ROS) formation, and nuclear factor (NF)-κB activation.

Results

HG markedly increased vascular permeability, monocyte adhesion, expressions of CAMs, formation of ROS, and activation of NF-κB. Remarkably, all of the observed vascular inflammatory effects induced by HG were inhibited by pretreatment with fisetin.

Conclusion

Vascular inflammatory responses induced by HG are critical events underlying the development of diabetic complications; therefore, our results suggest that fisetin possesses significant therapeutic effects against diabetic complications and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94:311–21.

    Article  PubMed  Google Scholar 

  2. Thomas JE, Foody JM. The pathophysiology of cardiovascular disease in diabetes mellitus and the future of therapy. J Cardiometab Syndr. 2007;2:108–13.

    Article  PubMed  Google Scholar 

  3. Roglic G, Unwin N, Bennett PH, Mathers C, Tuomilehto J, Nag S, et al. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care. 2005;28:2130–5.

    Article  PubMed  Google Scholar 

  4. Holman R, Turner R (1991) Textbook of diabetes. Oxford: Blackwell.

  5. Li GQ, Kam A, Wong KH, Zhou X, Omar EA, Alqahtani A, et al. Herbal medicines for the management of diabetes. Adv Exp Med Biol. 2012;771:396–413.

    PubMed  Google Scholar 

  6. Day C. Traditional plant treatments for diabetes mellitus: pharmaceutical foods. Br J Nutr. 1998;80:5–6.

    Article  CAS  PubMed  Google Scholar 

  7. Gerrity RG. The role of the monocyte in atherogenesis: I. transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981;103:181–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Wardle EN. Vascular permeability in diabetics and implications for therapy. Diabetes Res Clin Pract. 1994;23:135–9.

    Article  CAS  PubMed  Google Scholar 

  9. Esposito C, Fasoli G, Plati AR, Bellotti N, Conte MM, Cornacchia F, et al. Long-term exposure to high glucose up-regulates VCAM-induced endothelial cell adhesiveness to PBMC. Kidney Int. 2001;59:1842–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hamuro M, Polan J, Natarajan M, Mohan S. High glucose induced nuclear factor kappa B mediated inhibition of endothelial cell migration. Atherosclerosis. 2002;162:277–87.

    Article  CAS  PubMed  Google Scholar 

  11. Morigi M, Angioletti S, Imberti B, Donadelli R, Micheletti G, Figliuzzi M, et al. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-kB-dependent fashion. J Clin Invest. 1998;101:1905–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tooke JE. Microvascular function in human diabetes a physiological perspective. Diabetes. 1995;44:721–6.

    Article  CAS  PubMed  Google Scholar 

  13. Nannipieri M, Rizzo L, Rapuano A, Pilo A, Penno G, Navalesi R. Increased transcapillary escape rate of albumin in microalbuminuric type II diabetic patients. Diabetes Care. 1995;18:1–9.

    Article  CAS  PubMed  Google Scholar 

  14. Aggarwal BB, Ichikawa H, Garodia P, Weerasinghe P, Sethi G, Bhatt ID, et al. From traditional ayurvedic medicine to modern medicine: identification of therapeutic targets for suppression of inflammation and cancer. Expert Opin.Therapeutic Targets. 2006;10:87–118.

    Article  CAS  Google Scholar 

  15. Bae JS. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Arch Pharm Res. 2012;35:1511–23.

    Article  CAS  PubMed  Google Scholar 

  16. Middleton E Jr, Drzewiecki G. Flavonoid inhibition of human basophil histamine release stimulated by various agents. Biochem Pharmacol. 1984;33:3333–8.

    Article  CAS  PubMed  Google Scholar 

  17. Mukaida N. Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation. Int J Hematol. 2000;72:391–8.

    CAS  PubMed  Google Scholar 

  18. Hirano T, Higa S, Arimitsu J, Naka T, Ogata A, Shima Y, et al. Luteolin, a flavonoid, inhibits AP-1 activation by basophils. Biochem Biophys Res Commun. 2006;340:1–7.

    Article  CAS  PubMed  Google Scholar 

  19. Bakay M, Mucsi I, Beladi I, Gabor M. Effect of flavonoids and related substances. II. Antiviral effect of quercetin, dihydroquercetin and dihydrofisetin. Acta Microbiol Acad Sci Hung. 1968;15:223–7.

    CAS  PubMed  Google Scholar 

  20. Sung B, Pandey MK, Aggarwal BB. Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol Pharmacol. 2007;71:1703–14.

    Article  CAS  PubMed  Google Scholar 

  21. Akaishi T, Morimoto T, Shibao M, Watanabe S, Sakai-Kato K, Utsunomiya-Tate N, et al. Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid beta protein. Neurosci Lett. 2008;444:280–5.

    Article  CAS  PubMed  Google Scholar 

  22. Lee W, Ku SK, Bae JS. Emodin-6-O-beta-d-glucoside down-regulates endothelial protein C receptor shedding. Arch Pharm Res. 2013;36:1160–5.

    Article  CAS  PubMed  Google Scholar 

  23. Bae JS, Rezaie AR. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Rep. 2013;46:544–9.

    Article  CAS  PubMed  Google Scholar 

  24. Bae JS, Lee W, Rezaie AR. Polyphosphate elicits proinflammatory responses that are counteracted by activated protein C in both cellular and animal models. J Thromb Haemost. 2012;10(6):1145–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lee JD, Huh JE, Jeon G, Yang HR, Woo HS, Choi DY, et al. Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. Int Immunopharmacol. 2009;9:268–76.

    Article  CAS  PubMed  Google Scholar 

  26. Akeson AL, Woods CW. A fluorometric assay for the quantitation of cell adherence to endothelial cells. J Immunol Methods. 1993;163:181–5.

    Article  CAS  PubMed  Google Scholar 

  27. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 2001;276:7614–20.

    Article  CAS  PubMed  Google Scholar 

  28. Mackman N, Brand K, Edgington TS. Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. J Exp Med. 1991;174:1517–26.

    Article  CAS  PubMed  Google Scholar 

  29. Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes. 1999;48:937–42.

    Article  CAS  PubMed  Google Scholar 

  30. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979;241:2035–8.

    Article  CAS  PubMed  Google Scholar 

  31. Sander B, Larsen M, Engler C, Lund-Andersen H, Parving HH. Early changes in diabetic retinopathy: capillary loss and blood-retina barrier permeability in relation to metabolic control. Acta Ophthalmol (Copenh). 1994;72:553–9.

    Article  CAS  Google Scholar 

  32. Lopes-Virella MF, Virella G. Immune mechanisms of atherosclerosis in diabetes mellitus. Diabetes. 1992;41(Suppl 2):86–91.

    Article  PubMed  Google Scholar 

  33. Kado S, Wakatsuki T, Yamamoto M, Nagata N. Expression of intercellular adhesion molecule-1 induced by high glucose concentrations in human aortic endothelial cells. Life Sci. 2001;68:727–37.

    Article  CAS  PubMed  Google Scholar 

  34. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508–19.

    Article  CAS  PubMed  Google Scholar 

  35. Boisvert WA. Modulation of atherogenesis by chemokines. Trends Cardiovasc Med. 2004;14:161–5.

    Article  CAS  PubMed  Google Scholar 

  36. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939–45.

    Article  CAS  PubMed  Google Scholar 

  37. Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int Suppl. 2000;77:S3–12.

    Article  CAS  PubMed  Google Scholar 

  38. Han HJ, Lee YJ, Park SH, Lee JH, Taub M. High glucose-induced oxidative stress inhibits Na+/glucose cotransporter activity in renal proximal tubule cells. Am J Physiol Renal Physiol. 2005;288:F988–96.

    Article  CAS  PubMed  Google Scholar 

  39. Rimbach G, Valacchi G, Canali R, Virgili F. Macrophages stimulated with IFN-gamma activate NF-kappa B and induce MCP-1 gene expression in primary human endothelial cells. Mol Cell Biol Res Commun. 2000;3:238–42.

    Article  CAS  PubMed  Google Scholar 

  40. Uemura S, Matsushita H, Li W, Glassford AJ, Asagami T, Lee KH, et al. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res. 2001;88:1291–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) funded by the Korea government [MSIP] (Grant Nos. 2013-067,053 and NRF-2012R1A4A1028835).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sup Bae.

Additional information

Responsible Editor: Liwu Li.

S. Kwak and S.-K. Ku contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, S., Ku, SK. & Bae, JS. Fisetin inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflamm. Res. 63, 779–787 (2014). https://doi.org/10.1007/s00011-014-0750-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0750-4

Keywords

Navigation