Skip to main content
Log in

FcγRIIa requires lipid rafts, but not co-localization into rafts, for effector function

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To determine if receptor localization into lipid rafts, or the lipid rafts themselves, are important for FcγRIIa effector functions.

Material

Wild-type FcγRIIa or mutant FcγRIIa(C208A) that does not translocate to lipid rafts were transfected into Chinese hamster ovary (CHO) cells which have been shown to be reliable cells for studying FcγR function.

Treatment

Cells were treated with buffer or methyl-β-cyclodextrin (MβCD) to deplete cholesterol and dissolve the structure of lipid rafts.

Methods

To evaluate lipid raft association, transfected CHO cells were lysed and centrifuged over a sucrose gradient. Fractions were run on SDS-PAGE and blotted for FcγRIIa or sphingolipid GM1 to illustrate the lipid raft fractions. Lateral mobility of GFP-tagged wild-type or mutant FcγRIIa was assessed using fluorescence recovery after photobleaching (FRAP) microscopy. Internalization of IgG-opsonized erythrocytes was assessed by fluorescence microscopy and uptake of heat-aggregated IgG (haIgG) was measured using flow cytometry.

Results

We observed that FcγRIIa(C208A) did not localize into lipid rafts. However, the mutant FcγRIIa retained lateral mobility and effector function similar to wild-type FcγRIIa. However, mutant FcγRIIa function was abolished upon treatment with MβCD.

Conclusions

Lipid rafts provide an essential component required for effector activities independent of receptor localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vieth JA, Kim MK, Pan XQ, Schreiber AD, Worth RG. Differential requirement of lipid rafts for FcgammaRIIA mediated effector activities. Cell Immunol. 2010;265(2):111–9.

    Article  PubMed  CAS  Google Scholar 

  2. Barnes NC, Powell MS, Trist HM, Gavin AL, Wines BD, Hogarth PM. Raft localisation of FcgammaRIIa and efficient signaling are dependent on palmitoylation of cysteine 208. Immunol Lett. 2006;104(1–2):118–23.

    Article  PubMed  CAS  Google Scholar 

  3. Bournazos S, Hart SP, Chamberlain LH, Glennie MJ, Dransfield I. Association of FcgammaRIIa (CD32a) with lipid rafts regulates ligand binding activity. J Immunol. 2009;182(12):8026–36.

    Article  PubMed  CAS  Google Scholar 

  4. Garcia-Garcia E, Brown EJ, Rosales C. Transmembrane mutations to FcgammaRIIA alter its association with lipid rafts: implications for receptor signaling. J Immunol. 2007;178(5):3048–58.

    PubMed  CAS  Google Scholar 

  5. Mansfield PJ, Hinkovska-Galcheva V, Borofsky MS, Shayman JA, Boxer LA. Phagocytic signaling molecules in lipid rafts of COS-1 cells transfected with FcgammaRIIA. Biochem Biophys Res Commun. 2005;331(1):132–8.

    Article  PubMed  CAS  Google Scholar 

  6. Katsumata O, Hara-Yokoyama M, Sautes-Fridman C, Nagatsuka Y, Katada T, Hirabayashi Y, et al. Association of FcgammaRII with low-density detergent-resistant membranes is important for cross-linking-dependent initiation of the tyrosine phosphorylation pathway and superoxide generation. J Immunol. 2001;167(10):5814–23.

    PubMed  CAS  Google Scholar 

  7. Barabe F, Rollet-Labelle E, Gilbert C, Fernandes MJ, Naccache SN, Naccache PH. Early events in the activation of Fc gamma RIIA in human neutrophils: stimulated insolubilization, translocation to detergent-resistant domains, and degradation of Fc gamma RIIA. J Immunol. 2002;168(8):4042–9.

    PubMed  CAS  Google Scholar 

  8. Kono H, Suzuki T, Yamamoto K, Okada M, Yamamoto T, Honda Z. Spatial raft coalescence represents an initial step in Fc gamma R signaling. J Immunol. 2002;169(1):193–203.

    PubMed  CAS  Google Scholar 

  9. Cuschieri J. Implications of lipid raft disintegration: enhanced anti-inflammatory macrophage phenotype. Surgery. 2004;136(2):169–75.

    Article  PubMed  Google Scholar 

  10. Hoessli DC, Ilangumaran S, Soltermann A, Robinson PJ, Borisch B, Nasir Ud D. Signaling through sphingolipid microdomains of the plasma membrane: the concept of signaling platform. Glycoconj J. 2000;17(3–4):191–7.

    Article  PubMed  CAS  Google Scholar 

  11. Zidovetzki R, Levitan I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta. 2007;1768(6):1311–24.

    Article  PubMed  CAS  Google Scholar 

  12. Flaswinkel H, Barner M, Reth M. The tyrosine activation motif as a target of protein tyrosine kinases and SH2 domains. Semin Immunol. 1995;7(1):21–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ghazizadeh S, Bolen JB, Fleit HB. Tyrosine phosphorylation and association of Syk with Fc gamma RII in monocytic THP-1 cells. Biochem J. 1995;305(Pt 2):669–74.

    PubMed  CAS  Google Scholar 

  14. Joshi T, Butchar JP, Tridandapani S. Fcgamma receptor signaling in phagocytes. Int J Hematol. 2006;84(3):210–6.

    Article  PubMed  CAS  Google Scholar 

  15. Greenberg S. Modular components of phagocytosis. J Leukoc Biol. 1999;66(5):712–7.

    PubMed  CAS  Google Scholar 

  16. Hunter S, Kamoun M, Schreiber AD. Transfection of an Fc gamma receptor cDNA induces T cells to become phagocytic. Proc Natl Acad Sci USA. 1994;91(21):10232–6.

    Article  PubMed  CAS  Google Scholar 

  17. Worth RG, Kim MK, Kindzelskii AL, Petty HR, Schreiber AD. Signal sequence within Fc{gamma}RIIA controls calcium wave propagation patterns: Apparent role in phagolysosome fusion. Proc Natl Acad Sci USA. 2003;100:4533–8.

    Article  PubMed  CAS  Google Scholar 

  18. Booth JW, Kim MK, Jankowski A, Schreiber AD, Grinstein S. Contrasting requirements for ubiquitylation during Fc receptor-mediated endocytosis and phagocytosis. EMBO J. 2002;21(3):251–8.

    Article  PubMed  CAS  Google Scholar 

  19. Daniels AB, Worth RG, Dickstein RJ, Dickstein JS, Kim-Han TH, Kim MK, et al. Analysis of FcgammaRIIA cytoplasmic tail requirements in signaling for serotonin secretion: evidence for an ITAM-dependent, PI3 K-dependent pathway. Scand J Immunol. 2010;71(4):232–9.

    Article  PubMed  CAS  Google Scholar 

  20. Worth RG, Mayo-Bond L, Kim MK, van de Winkel JG, Todd RF 3rd, Petty HR, et al. The cytoplasmic domain of FcgammaRIIA (CD32) participates in phagolysosome formation. Blood. 2001;98(12):3429–34.

    Article  PubMed  CAS  Google Scholar 

  21. Worth RG, Mayo-Bond L, van de Winkel JG, Todd RF 3rd, Petty HR. CR3 (alphaM beta2; CD11b/CD18) restores IgG-dependent phagocytosis in transfectants expressing a phagocytosis-defective Fc gammaRIIA (CD32) tail-minus mutant. J Immunol. 1996;157(12):5660–5.

    PubMed  CAS  Google Scholar 

  22. Worth RG, Chien CD, Chien P, Reilly MP, McKenzie SE, Schreiber AD. Platelet FcgammaRIIA binds and internalizes IgG-containing complexes. Exp Hematol. 2006;34(11):1490–5.

    Article  PubMed  CAS  Google Scholar 

  23. Wessel D, Flugge UI. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984;138(1):141–3.

    Article  PubMed  CAS  Google Scholar 

  24. Hinkovska-Galcheva V, Boxer LA, Kindzelskii A, Hiraoka M, Abe A, Goparju S, et al. Ceramide 1-phosphate, a mediator of phagocytosis. J Biol Chem. 2005;280(28):26612–21.

    Article  PubMed  CAS  Google Scholar 

  25. Kwiatkowska K, Frey J, Sobota A. Phosphorylation of FcgammaRIIA is required for the receptor-induced actin rearrangement and capping: the role of membrane rafts. J Cell Sci. 2003;116(Pt 3):537–50.

    Article  PubMed  CAS  Google Scholar 

  26. Korzeniowski M, Kwiatkowska K, Sobota A. Insights into the association of FcgammaRII and TCR with detergent-resistant membrane domains: isolation of the domains in detergent-free density gradients facilitates membrane fragment reconstitution. Biochemistry. 2003;42(18):5358–67.

    Article  PubMed  CAS  Google Scholar 

  27. Abdel Shakor AB, Kwiatkowska K, Sobota A. Cell surface ceramide generation precedes and controls FcgammaRII clustering and phosphorylation in rafts. J Biol Chem. 2004;279(35):36778–87.

    Article  PubMed  CAS  Google Scholar 

  28. Strzelecka-Kiliszek A, Korzeniowski M, Kwiatkowska K, Mrozinska K, Sobota A. Activated FcgammaRII and signalling molecules revealed in rafts by ultra-structural observations of plasma-membrane sheets. Mol Membr Biol. 2004;21(2):101–8.

    Article  PubMed  CAS  Google Scholar 

  29. Tse SM, Furuya W, Gold E, Schreiber AD, Sandvig K, Inman RD, et al. Differential role of actin, clathrin, and dynamin in Fc gamma receptor-mediated endocytosis and phagocytosis. J Biol Chem. 2003;278(5):3331–8.

    Article  PubMed  CAS  Google Scholar 

  30. Mero P, Zhang CY, Huang ZY, Kim MK, Schreiber AD, Grinstein S, et al. Phosphorylation-independent ubiquitylation and endocytosis of Fc gammaRIIA. J Biol Chem. 2006;281(44):33242–9.

    Article  PubMed  CAS  Google Scholar 

  31. Katagiri YU, Kiyokawa N, Fujimoto J. A role for lipid rafts in immune cell signaling. Microbiol Immunol. 2001;45(1):1–8.

    PubMed  CAS  Google Scholar 

  32. Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S. Membrane phosphatidylserine regulates surface charge and protein localization. Science. 2008;319(5860):210–3.

    Article  PubMed  CAS  Google Scholar 

  33. Yeung T, Terebiznik M, Yu L, Silvius J, Abidi WM, Philips M, et al. Receptor activation alters inner surface potential during phagocytosis. Science. 2006;313(5785):347–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an Arthritis Foundation Investigator Award (to R.G.W.) and National Institutes of Health grant HL-28207 (to A.D.S.). The authors would like to thank Dr. Andrea Kalinoski in the University of Toledo Advanced Microscopy and Imaging Center (AMIC) and the Flow Cytometry Core facility for technical assistance and use of the equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall G. Worth.

Additional information

Responsible editor: Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieth, J.A., Kim, Mk., Glaser, D. et al. FcγRIIa requires lipid rafts, but not co-localization into rafts, for effector function. Inflamm. Res. 62, 37–43 (2013). https://doi.org/10.1007/s00011-012-0548-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0548-1

Keywords

Navigation