, Volume 60, Issue 7, pp 619-632,
Open Access This content is freely available online to anyone, anywhere at any time.

Role of CFTR expressed by neutrophils in modulating acute lung inflammation and injury in mice

Abstract

Objective and design

Cystic fibrosis transmembrane conductance regulator (CFTR) regulates infection and inflammation. In this study, we investigated whether a lack of functional CFTR in neutrophils would promote lipopolysaccharide (LPS)-induced lung inflammation and injury.

Materials and methods

CFTR-inhibited or F508del-CFTR-mutated neutrophils were stimulated with LPS and cultured to evaluate production of cytokines and NF-κB activation. Wild-type mice were reconstituted with F508del neutrophils or bone marrow and then intratracheally challenged with LPS to observe lung inflammatory response.

Results

Pharmacologic inhibition and genetic mutation of CFTR in neutrophils activated NF-κB and facilitated macrophage inflammatory protein-2 (MIP-2) and tumor necrosis factor-α (TNF-α) production. Wild-type mice reconstituted with F508del neutrophils and bone marrow had more severe lung inflammation and injury after LPS challenge compared to wild-type mice receiving wild-type neutrophils or bone marrow reconstitution.

Conclusions

Lack of functional CFTR in neutrophils can promote LPS-induced acute lung inflammation and injury.

Responsible Editor: Liwu Li.